Cargando…

The Chk1 inhibitor MK-8776 increases the radiosensitivity of human triple-negative breast cancer by inhibiting autophagy

MK-8776 is a recently described inhibitor that is highly selective for checkpoint kinase 1 (Chk1), which can weaken the DNA repair capacity in cancer cells to achieve chemo-sensitization. A number of studies show that MK-8776 enhances the cytotoxicity of hydroxyurea and gemcitabine without increasin...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Zhi-rui, Yang, Zhao-zhi, Wang, Shao-jia, Zhang, Li, Luo, Ju-rui, Feng, Yan, Yu, Xiao-li, Chen, Xing-xing, Guo, Xiao-mao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386307/
https://www.ncbi.nlm.nih.gov/pubmed/28042876
http://dx.doi.org/10.1038/aps.2016.136
Descripción
Sumario:MK-8776 is a recently described inhibitor that is highly selective for checkpoint kinase 1 (Chk1), which can weaken the DNA repair capacity in cancer cells to achieve chemo-sensitization. A number of studies show that MK-8776 enhances the cytotoxicity of hydroxyurea and gemcitabine without increasing normal tissue toxicities. Thus far, there is no evidence that MK-8776 can be used as a radiotherapy sensitization agent. In this study, we investigated the effects of MK-8776 on the radiosensitivity of 3 human triple-negative breast cancer (TNBC) cell lines MDA-MB-231, BT-549 and CAL-51. MK-8776 dose-dependently inhibited the proliferation of MDA-MB-231, BT-549 and CAL-51 cells with IC(50) values of 9.4, 17.6 and 2.1 μmol/L, respectively. Compared with irradiation-alone treatment, pretreatment with a low dose of MK-8776 (100–400 nmol/L) significantly increased irradiation-induced γH2A.X foci in the 3 TNBC cell lines, suggesting enhanced DNA damage by MK-8776, inhibited the cell proliferation and increased the radiosensitivity of the 3 TNBC cell lines. Similar results were obtained in MDA-MB-231 xenograft tumors in nude mice that received MK-8776 (15 or 40 mg/kg, ip) 26 d after irradiation. To explore the mechanisms underlying the radio-sensitization by MK-8776, we used TEM and found that irradiation significantly increased the numbers of autophagosomes in the 3 TNBC cell lines. Moreover, irradiation markedly elevated the levels of Atg5, and promoted the transformation of LC3-I to LC3-II in the cells. Pretreatment with the low dose of MK-8776 suppressed these effects. The above results suggest that MK-8776 increases human TNBC radiosensitivity by inhibiting irradiation-induced autophagy and that MK-8776 may be a potential agent in the radiosensitization of human TNBC.