Cargando…

Cysteine-linked dimerization of BST-2 confers anoikis resistance to breast cancer cells by negating proapoptotic activities to promote tumor cell survival and growth

Almost all breast tumors express the antiviral protein BST-2 with 67%, 25% and 8.2% containing high, medium or low levels of BST-2, respectively. Breast tumor cells and tissues that contain elevated levels of BST-2 are highly aggressive. Suppression of BST-2 expression reprograms tumorigenic propert...

Descripción completa

Detalles Bibliográficos
Autores principales: Mahauad-Fernandez, Wadie D, Okeoma, Chioma M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386562/
https://www.ncbi.nlm.nih.gov/pubmed/28300825
http://dx.doi.org/10.1038/cddis.2017.68
Descripción
Sumario:Almost all breast tumors express the antiviral protein BST-2 with 67%, 25% and 8.2% containing high, medium or low levels of BST-2, respectively. Breast tumor cells and tissues that contain elevated levels of BST-2 are highly aggressive. Suppression of BST-2 expression reprograms tumorigenic properties of cancer cells and diminishes cancer cell aggressiveness. Using structure/function studies, we report that dimerization of BST-2 through cysteine residues located in the BST-2 extracellular domain (ECD), leads to anoikis resistance and cell survival through proteasome-mediated degradation of BIM—a key proapoptotic factor. Importantly, BST-2 dimerization promotes tumor growth in preclinical breast cancer models in vitro and in vivo. Furthermore, we demonstrate that restoration of the ECD cysteine residues is sufficient to rescue cell survival and tumor growth via a previously unreported pathway—BST-2/GRB2/ERK/BIM/Cas3. These findings suggest that disruption of BST-2 dimerization offers a potential therapeutic approach for breast cancer.