Cargando…

Engineering antibody-like inhibitors to prevent and treat HIV-1 infection

PURPOSE OF REVIEW: Here we discuss recently developed HIV-1 entry inhibitors that can target multiple epitopes on the HIV-1 envelope glycoprotein (Env), with an emphasis on eCD4-Ig. Some of these inhibitors are more potent and broader than any single antibody characterized to date. We also discuss t...

Descripción completa

Detalles Bibliográficos
Autores principales: Gardner, Matthew R., Farzan, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389584/
https://www.ncbi.nlm.nih.gov/pubmed/28422793
http://dx.doi.org/10.1097/COH.0000000000000367
Descripción
Sumario:PURPOSE OF REVIEW: Here we discuss recently developed HIV-1 entry inhibitors that can target multiple epitopes on the HIV-1 envelope glycoprotein (Env), with an emphasis on eCD4-Ig. Some of these inhibitors are more potent and broader than any single antibody characterized to date. We also discuss the use of recombinant adeno-associated virus (rAAV) vectors as a platform for long-term expression of these inhibitors. RECENT FINDINGS: Much of the exterior of HIV-1 Env can be targeted by broadly neutralizing antibodies (bNAbs). Recent studies combine the variable regions or Fabs from different bNAbs, often with the receptor-mimetic components, to create broad, potent, and hard-to-escape inhibitors. rAAV vectors can express these inhibitors for years in vivo, highlighting their ability to prevent or treat HIV-1 infection. SUMMARY: By targeting multiple epitopes on Env, bispecific and antibody-like inhibitors can be broader and more potent than bNAbs. These inhibitors can provide long-term protection from, and perhaps suppression of, HIV-1 if they are administered by a delivery platform, like rAAV vectors, but only after rAAV limitations are addressed.