Cargando…
Amide-controlled, one-pot synthesis of tri-substituted purines generates structural diversity and analogues with trypanocidal activity
A novel one-pot synthesis of tri-substituted purines and the discovery of purine analogues with trypanocidal activity are reported. The reaction is initiated by a metal-free oxidative coupling of primary alkoxides and diaminopyrimidines with Schiff base formation and subsequent annulation in the pre...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5390905/ https://www.ncbi.nlm.nih.gov/pubmed/25773920 http://dx.doi.org/10.1038/srep09139 |
Sumario: | A novel one-pot synthesis of tri-substituted purines and the discovery of purine analogues with trypanocidal activity are reported. The reaction is initiated by a metal-free oxidative coupling of primary alkoxides and diaminopyrimidines with Schiff base formation and subsequent annulation in the presence of large N,N-dimethylamides (e.g. N,N-dimethylpropanamide or larger). This synthetic route is in competition with a reaction previously-reported by our group1, allowing the generation of a combinatorial library of tri-substituted purines by the simple modification of the amide and the alkoxide employed. Among the variety of structures generated, two purine analogues displayed trypanocidal activity against the protozoan parasite Trypanosoma brucei with IC(50) < 5 μM, being each of those compounds obtained through each of the synthetic pathways. |
---|