Cargando…
Learning from label proportions in brain-computer interfaces: Online unsupervised learning with guarantees
OBJECTIVE: Using traditional approaches, a brain-computer interface (BCI) requires the collection of calibration data for new subjects prior to online use. Calibration time can be reduced or eliminated e.g., by subject-to-subject transfer of a pre-trained classifier or unsupervised adaptive classifi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391120/ https://www.ncbi.nlm.nih.gov/pubmed/28407016 http://dx.doi.org/10.1371/journal.pone.0175856 |