Cargando…
Silencing of the small GTPase DIRAS3 induces cellular senescence in human white adipose stromal/progenitor cells
Inhibition of Akt-mTOR signaling protects from obesity and extends life span in animals. In the present study, we analyse the impact of the small GTPase, GTP-binding RAS-like 3 (DIRAS3), a recently identified weight-loss target gene, on cellular senescence in adipose stromal/progenitor cells (ASCs)...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391236/ https://www.ncbi.nlm.nih.gov/pubmed/28316325 http://dx.doi.org/10.18632/aging.101197 |
_version_ | 1783229245790617600 |
---|---|
author | Ejaz, Asim Mattesich, Monika Zwerschke, Werner |
author_facet | Ejaz, Asim Mattesich, Monika Zwerschke, Werner |
author_sort | Ejaz, Asim |
collection | PubMed |
description | Inhibition of Akt-mTOR signaling protects from obesity and extends life span in animals. In the present study, we analyse the impact of the small GTPase, GTP-binding RAS-like 3 (DIRAS3), a recently identified weight-loss target gene, on cellular senescence in adipose stromal/progenitor cells (ASCs) derived from human subcutaneous white adipose tissue (sWAT). We demonstrate that DIRAS3 knock-down (KD) in ASCs induces activation of Akt-mTOR signaling and proliferation arrest. DIRAS3 KD ASCs lose the potential to form colonies and are negative for Ki-67. Moreover, silencing of DIRAS3 results in a premature senescence phenotype. This is characterized by senescence-associated β-galactosidase positive enlarged ASCs containing increased p16(INK4A) level and activated retinoblastoma protein. DIRAS3 KD ASCs form senescence-associated heterochromatic foci as shown by increased level of γ-H2A.X positive foci. Furthermore, these cells express a senescence-associated secretory phenotype characterized by increased interleukin-8 secretion. Human DIRAS3 KD ASCs develop also a senescence phenotype in sWAT of SCID mice. Finally, we show that DIRAS3 KD in ASCs stimulates both adipogenic differentiation and premature senescence. In conclusion, our data suggest that silencing of DIRAS3 in ASCs and subsequently hyper-activation of Akt-mTOR drives adipogenesis and premature senescence. Moreover, differentiating ASCs and/or mature adipocytes may acquire features of cellular senescence. |
format | Online Article Text |
id | pubmed-5391236 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-53912362017-04-20 Silencing of the small GTPase DIRAS3 induces cellular senescence in human white adipose stromal/progenitor cells Ejaz, Asim Mattesich, Monika Zwerschke, Werner Aging (Albany NY) Research Paper Inhibition of Akt-mTOR signaling protects from obesity and extends life span in animals. In the present study, we analyse the impact of the small GTPase, GTP-binding RAS-like 3 (DIRAS3), a recently identified weight-loss target gene, on cellular senescence in adipose stromal/progenitor cells (ASCs) derived from human subcutaneous white adipose tissue (sWAT). We demonstrate that DIRAS3 knock-down (KD) in ASCs induces activation of Akt-mTOR signaling and proliferation arrest. DIRAS3 KD ASCs lose the potential to form colonies and are negative for Ki-67. Moreover, silencing of DIRAS3 results in a premature senescence phenotype. This is characterized by senescence-associated β-galactosidase positive enlarged ASCs containing increased p16(INK4A) level and activated retinoblastoma protein. DIRAS3 KD ASCs form senescence-associated heterochromatic foci as shown by increased level of γ-H2A.X positive foci. Furthermore, these cells express a senescence-associated secretory phenotype characterized by increased interleukin-8 secretion. Human DIRAS3 KD ASCs develop also a senescence phenotype in sWAT of SCID mice. Finally, we show that DIRAS3 KD in ASCs stimulates both adipogenic differentiation and premature senescence. In conclusion, our data suggest that silencing of DIRAS3 in ASCs and subsequently hyper-activation of Akt-mTOR drives adipogenesis and premature senescence. Moreover, differentiating ASCs and/or mature adipocytes may acquire features of cellular senescence. Impact Journals LLC 2017-03-17 /pmc/articles/PMC5391236/ /pubmed/28316325 http://dx.doi.org/10.18632/aging.101197 Text en Copyright: © 2017 Ejaz et al. http://creativecommons.org/licenses/by/3.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/) (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Research Paper Ejaz, Asim Mattesich, Monika Zwerschke, Werner Silencing of the small GTPase DIRAS3 induces cellular senescence in human white adipose stromal/progenitor cells |
title | Silencing of the small GTPase DIRAS3 induces cellular senescence in human white adipose stromal/progenitor cells |
title_full | Silencing of the small GTPase DIRAS3 induces cellular senescence in human white adipose stromal/progenitor cells |
title_fullStr | Silencing of the small GTPase DIRAS3 induces cellular senescence in human white adipose stromal/progenitor cells |
title_full_unstemmed | Silencing of the small GTPase DIRAS3 induces cellular senescence in human white adipose stromal/progenitor cells |
title_short | Silencing of the small GTPase DIRAS3 induces cellular senescence in human white adipose stromal/progenitor cells |
title_sort | silencing of the small gtpase diras3 induces cellular senescence in human white adipose stromal/progenitor cells |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391236/ https://www.ncbi.nlm.nih.gov/pubmed/28316325 http://dx.doi.org/10.18632/aging.101197 |
work_keys_str_mv | AT ejazasim silencingofthesmallgtpasediras3inducescellularsenescenceinhumanwhiteadiposestromalprogenitorcells AT mattesichmonika silencingofthesmallgtpasediras3inducescellularsenescenceinhumanwhiteadiposestromalprogenitorcells AT zwerschkewerner silencingofthesmallgtpasediras3inducescellularsenescenceinhumanwhiteadiposestromalprogenitorcells |