Cargando…

Effects of contact structure on the transient evolution of HIV virulence

Early in an epidemic, high densities of susceptible hosts select for relatively high parasite virulence; later in the epidemic, lower susceptible densities select for lower virulence. Thus over the course of a typical epidemic the average virulence of parasite strains increases initially, peaks part...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Sang Woo, Bolker, Benjamin M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391972/
https://www.ncbi.nlm.nih.gov/pubmed/28362805
http://dx.doi.org/10.1371/journal.pcbi.1005453
_version_ 1783229376116031488
author Park, Sang Woo
Bolker, Benjamin M.
author_facet Park, Sang Woo
Bolker, Benjamin M.
author_sort Park, Sang Woo
collection PubMed
description Early in an epidemic, high densities of susceptible hosts select for relatively high parasite virulence; later in the epidemic, lower susceptible densities select for lower virulence. Thus over the course of a typical epidemic the average virulence of parasite strains increases initially, peaks partway through the epidemic, then declines again. However, precise quantitative outcomes, such as the peak virulence reached and its timing, may depend sensitively on epidemiological details. Fraser et al. proposed a model for the eco-evolutionary dynamics of HIV that incorporates the tradeoffs between transmission and virulence (mediated by set-point viral load, SPVL) and their heritability between hosts. Their model used implicit equations to capture the effects of partnership dynamics that are at the core of epidemics of sexually transmitted diseases. Our models combine HIV virulence tradeoffs with a range of contact models, explicitly modeling partnership formation and dissolution and allowing for individuals to transmit disease outside of partnerships. We assess summary statistics such as the peak virulence (corresponding to the maximum value of population mean log(10) SPVL achieved throughout the epidemic) across models for a range of parameters applicable to the HIV epidemic in sub-Saharan Africa. Although virulence trajectories are broadly similar across models, the timing and magnitude of the virulence peak vary considerably. Previously developed implicit models predicted lower virulence and slower progression at the peak (a maximum of 3.5 log(10) SPVL) compared both to more realistic models and to simple random-mixing models with no partnership structure at all (both with a maximum of ≈ 4.7 log(10) SPVL). In this range of models, the simplest random-mixing structure best approximates the most realistic model; this surprising outcome occurs because the dominance of extra-pair contact in the realistic model swamps the effects of partnership structure.
format Online
Article
Text
id pubmed-5391972
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-53919722017-05-03 Effects of contact structure on the transient evolution of HIV virulence Park, Sang Woo Bolker, Benjamin M. PLoS Comput Biol Research Article Early in an epidemic, high densities of susceptible hosts select for relatively high parasite virulence; later in the epidemic, lower susceptible densities select for lower virulence. Thus over the course of a typical epidemic the average virulence of parasite strains increases initially, peaks partway through the epidemic, then declines again. However, precise quantitative outcomes, such as the peak virulence reached and its timing, may depend sensitively on epidemiological details. Fraser et al. proposed a model for the eco-evolutionary dynamics of HIV that incorporates the tradeoffs between transmission and virulence (mediated by set-point viral load, SPVL) and their heritability between hosts. Their model used implicit equations to capture the effects of partnership dynamics that are at the core of epidemics of sexually transmitted diseases. Our models combine HIV virulence tradeoffs with a range of contact models, explicitly modeling partnership formation and dissolution and allowing for individuals to transmit disease outside of partnerships. We assess summary statistics such as the peak virulence (corresponding to the maximum value of population mean log(10) SPVL achieved throughout the epidemic) across models for a range of parameters applicable to the HIV epidemic in sub-Saharan Africa. Although virulence trajectories are broadly similar across models, the timing and magnitude of the virulence peak vary considerably. Previously developed implicit models predicted lower virulence and slower progression at the peak (a maximum of 3.5 log(10) SPVL) compared both to more realistic models and to simple random-mixing models with no partnership structure at all (both with a maximum of ≈ 4.7 log(10) SPVL). In this range of models, the simplest random-mixing structure best approximates the most realistic model; this surprising outcome occurs because the dominance of extra-pair contact in the realistic model swamps the effects of partnership structure. Public Library of Science 2017-03-31 /pmc/articles/PMC5391972/ /pubmed/28362805 http://dx.doi.org/10.1371/journal.pcbi.1005453 Text en © 2017 Park, Bolker http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Park, Sang Woo
Bolker, Benjamin M.
Effects of contact structure on the transient evolution of HIV virulence
title Effects of contact structure on the transient evolution of HIV virulence
title_full Effects of contact structure on the transient evolution of HIV virulence
title_fullStr Effects of contact structure on the transient evolution of HIV virulence
title_full_unstemmed Effects of contact structure on the transient evolution of HIV virulence
title_short Effects of contact structure on the transient evolution of HIV virulence
title_sort effects of contact structure on the transient evolution of hiv virulence
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391972/
https://www.ncbi.nlm.nih.gov/pubmed/28362805
http://dx.doi.org/10.1371/journal.pcbi.1005453
work_keys_str_mv AT parksangwoo effectsofcontactstructureonthetransientevolutionofhivvirulence
AT bolkerbenjaminm effectsofcontactstructureonthetransientevolutionofhivvirulence