Cargando…
Fast, scalable prediction of deleterious noncoding variants from functional and population genomic data
Many genetic variants that influence phenotypes of interest are located outside of protein-coding genes, yet existing methods for identifying such variants have poor predictive power. Here, we introduce a new computational method, called LINSIGHT, that substantially improves the prediction of noncod...
Autores principales: | Huang, Yi-Fei, Gulko, Brad, Siepel, Adam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5395419/ https://www.ncbi.nlm.nih.gov/pubmed/28288115 http://dx.doi.org/10.1038/ng.3810 |
Ejemplares similares
-
Probabilities of Fitness Consequences for Point Mutations Across the Human Genome
por: Gulko, Brad, et al.
Publicado: (2015) -
Bayesian inference of ancient human demography from individual genome sequences
por: Gronau, Ilan, et al.
Publicado: (2011) -
CADD: predicting the deleteriousness of variants throughout the human genome
por: Rentzsch, Philipp, et al.
Publicado: (2019) -
Population Prevalence of Deleterious SGCE Variants
por: LeDoux, Mark S.
Publicado: (2020) -
Comparative Genomics Approaches Accurately Predict Deleterious Variants in Plants
por: Kono, Thomas J.Y., et al.
Publicado: (2018)