Cargando…
Self‐Templating and In Situ Assembly of a Cubic Cluster‐of‐Clusters Architecture Based on a {Mo(24)Fe(12)} Inorganic Macrocycle
Engineering self‐templating inorganic architectures is critical for the development of bottom‐up approaches to nanoscience, but systems with a hierarchy of templates are elusive. Herein we describe that the cluster‐anion‐templated (CAT) assembly of a {CAT}⊂{Mo(24)Fe(12)} macrocycle forms a giant ca....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5396355/ https://www.ncbi.nlm.nih.gov/pubmed/27358195 http://dx.doi.org/10.1002/anie.201603298 |
Sumario: | Engineering self‐templating inorganic architectures is critical for the development of bottom‐up approaches to nanoscience, but systems with a hierarchy of templates are elusive. Herein we describe that the cluster‐anion‐templated (CAT) assembly of a {CAT}⊂{Mo(24)Fe(12)} macrocycle forms a giant ca. 220 nm(3) unit cell containing 16 macrocycles clustered into eight face‐shared tetrahedral cluster‐of‐clusters assemblies. We show that {CAT}⊂{Mo(24)Fe(12)} with different CATs gives the compounds 1–4 for CAT=Anderson {FeMo(6)} (1), Keggin {PMo(12)} (2), Dawson {P(2)W(18)} (3), and {Mo(12)O(36)(HPO(3))(2)} (4) polyoxometalates. “Template‐free” assembly can be achieved, whereby the macrocycle components can also form a template in situ allowing template to macrocycle to superstructure formation and the ability to exchange the templates. Furthermore, the transformation of template clusters within the inorganic macrocycle {Mo(24)Fe(12)} allows the self‐generation of an uncapped {Mo(12)O(36)(HPO(3))(2)} in compound 4. |
---|