Cargando…
Promoter hypermethylation as a mechanism for Lamin A/C silencing in a subset of neuroblastoma cells
Nuclear lamins support the nuclear envelope and provide anchorage sites for chromatin. They are involved in DNA synthesis, transcription, and replication. It has previously been reported that the lack of Lamin A/C expression in lymphoma and leukaemia is due to CpG island promoter hypermethylation. H...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5397038/ https://www.ncbi.nlm.nih.gov/pubmed/28422997 http://dx.doi.org/10.1371/journal.pone.0175953 |
_version_ | 1783230189771161600 |
---|---|
author | Rauschert, Ines Aldunate, Fabian Preussner, Jens Arocena-Sutz, Miguel Peraza, Vanina Looso, Mario Benech, Juan C. Agrelo, Ruben |
author_facet | Rauschert, Ines Aldunate, Fabian Preussner, Jens Arocena-Sutz, Miguel Peraza, Vanina Looso, Mario Benech, Juan C. Agrelo, Ruben |
author_sort | Rauschert, Ines |
collection | PubMed |
description | Nuclear lamins support the nuclear envelope and provide anchorage sites for chromatin. They are involved in DNA synthesis, transcription, and replication. It has previously been reported that the lack of Lamin A/C expression in lymphoma and leukaemia is due to CpG island promoter hypermethylation. Here, we provide evidence that Lamin A/C is silenced via this mechanism in a subset of neuroblastoma cells. Moreover, Lamin A/C expression can be restored with a demethylating agent. Importantly, Lamin A/C reintroduction reduced cell growth kinetics and impaired migration, invasion, and anchorage-independent cell growth. Cytoskeletal restructuring was also induced. In addition, the introduction of lamin Δ50, known as Progerin, caused senescence in these neuroblastoma cells. These cells were stiffer and developed a cytoskeletal structure that differed from that observed upon Lamin A/C introduction. Of relevance, short hairpin RNA Lamin A/C depletion in unmethylated neuroblastoma cells enhanced the aforementioned tumour properties. A cytoskeletal structure similar to that observed in methylated cells was induced. Furthermore, atomic force microscopy revealed that Lamin A/C knockdown decreased cellular stiffness in the lamellar region. Finally, the bioinformatic analysis of a set of methylation arrays of neuroblastoma primary tumours showed that a group of patients (around 3%) gives a methylation signal in some of the CpG sites located within the Lamin A/C promoter region analysed by bisulphite sequencing PCR. These findings highlight the importance of Lamin A/C epigenetic inactivation for a subset of neuroblastomas, leading to enhanced tumour properties and cytoskeletal changes. Additionally, these findings may have treatment implications because tumour cells lacking Lamin A/C exhibit more aggressive behaviour. |
format | Online Article Text |
id | pubmed-5397038 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-53970382017-05-04 Promoter hypermethylation as a mechanism for Lamin A/C silencing in a subset of neuroblastoma cells Rauschert, Ines Aldunate, Fabian Preussner, Jens Arocena-Sutz, Miguel Peraza, Vanina Looso, Mario Benech, Juan C. Agrelo, Ruben PLoS One Research Article Nuclear lamins support the nuclear envelope and provide anchorage sites for chromatin. They are involved in DNA synthesis, transcription, and replication. It has previously been reported that the lack of Lamin A/C expression in lymphoma and leukaemia is due to CpG island promoter hypermethylation. Here, we provide evidence that Lamin A/C is silenced via this mechanism in a subset of neuroblastoma cells. Moreover, Lamin A/C expression can be restored with a demethylating agent. Importantly, Lamin A/C reintroduction reduced cell growth kinetics and impaired migration, invasion, and anchorage-independent cell growth. Cytoskeletal restructuring was also induced. In addition, the introduction of lamin Δ50, known as Progerin, caused senescence in these neuroblastoma cells. These cells were stiffer and developed a cytoskeletal structure that differed from that observed upon Lamin A/C introduction. Of relevance, short hairpin RNA Lamin A/C depletion in unmethylated neuroblastoma cells enhanced the aforementioned tumour properties. A cytoskeletal structure similar to that observed in methylated cells was induced. Furthermore, atomic force microscopy revealed that Lamin A/C knockdown decreased cellular stiffness in the lamellar region. Finally, the bioinformatic analysis of a set of methylation arrays of neuroblastoma primary tumours showed that a group of patients (around 3%) gives a methylation signal in some of the CpG sites located within the Lamin A/C promoter region analysed by bisulphite sequencing PCR. These findings highlight the importance of Lamin A/C epigenetic inactivation for a subset of neuroblastomas, leading to enhanced tumour properties and cytoskeletal changes. Additionally, these findings may have treatment implications because tumour cells lacking Lamin A/C exhibit more aggressive behaviour. Public Library of Science 2017-04-19 /pmc/articles/PMC5397038/ /pubmed/28422997 http://dx.doi.org/10.1371/journal.pone.0175953 Text en © 2017 Rauschert et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Rauschert, Ines Aldunate, Fabian Preussner, Jens Arocena-Sutz, Miguel Peraza, Vanina Looso, Mario Benech, Juan C. Agrelo, Ruben Promoter hypermethylation as a mechanism for Lamin A/C silencing in a subset of neuroblastoma cells |
title | Promoter hypermethylation as a mechanism for Lamin A/C silencing in a subset of neuroblastoma cells |
title_full | Promoter hypermethylation as a mechanism for Lamin A/C silencing in a subset of neuroblastoma cells |
title_fullStr | Promoter hypermethylation as a mechanism for Lamin A/C silencing in a subset of neuroblastoma cells |
title_full_unstemmed | Promoter hypermethylation as a mechanism for Lamin A/C silencing in a subset of neuroblastoma cells |
title_short | Promoter hypermethylation as a mechanism for Lamin A/C silencing in a subset of neuroblastoma cells |
title_sort | promoter hypermethylation as a mechanism for lamin a/c silencing in a subset of neuroblastoma cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5397038/ https://www.ncbi.nlm.nih.gov/pubmed/28422997 http://dx.doi.org/10.1371/journal.pone.0175953 |
work_keys_str_mv | AT rauschertines promoterhypermethylationasamechanismforlaminacsilencinginasubsetofneuroblastomacells AT aldunatefabian promoterhypermethylationasamechanismforlaminacsilencinginasubsetofneuroblastomacells AT preussnerjens promoterhypermethylationasamechanismforlaminacsilencinginasubsetofneuroblastomacells AT arocenasutzmiguel promoterhypermethylationasamechanismforlaminacsilencinginasubsetofneuroblastomacells AT perazavanina promoterhypermethylationasamechanismforlaminacsilencinginasubsetofneuroblastomacells AT loosomario promoterhypermethylationasamechanismforlaminacsilencinginasubsetofneuroblastomacells AT benechjuanc promoterhypermethylationasamechanismforlaminacsilencinginasubsetofneuroblastomacells AT agreloruben promoterhypermethylationasamechanismforlaminacsilencinginasubsetofneuroblastomacells |