Cargando…

Level of FACT defines the transcriptional landscape and aggressive phenotype of breast cancer cells

Although breast cancer (BrCa) may be detected at an early stage, there is a shortage of markers that predict tumor aggressiveness and a lack of targeted therapies. Histone chaperone FACT, expressed in a limited number of normal cells, is overexpressed in different types of cancer, including BrCa. Re...

Descripción completa

Detalles Bibliográficos
Autores principales: Fleyshman, Daria, Prendergast, Laura, Safina, Alfiya, Paszkiewicz, Geraldine, Commane, Mairead, Morgan, Kelsey, Attwood, Kristopher, Gurova, Katerina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5400524/
https://www.ncbi.nlm.nih.gov/pubmed/28423528
http://dx.doi.org/10.18632/oncotarget.15656
Descripción
Sumario:Although breast cancer (BrCa) may be detected at an early stage, there is a shortage of markers that predict tumor aggressiveness and a lack of targeted therapies. Histone chaperone FACT, expressed in a limited number of normal cells, is overexpressed in different types of cancer, including BrCa. Recently, we found that FACT expression in BrCa correlates with markers of aggressive BrCa, which prompted us to explore the consequences of FACT inhibition in BrCa cells with varying levels of FACT. FACT inhibition using a small molecule or shRNA caused reduced growth and viability of all BrCa cells tested. Phenotypic changes were more severe in high- FACT cells (death or growth arrest) than in low-FACT cells (decreased proliferation). Though inhibition had no effect on the rate of general transcription, expression of individual genes was changed in a cell-specific manner. Initially distinct transcriptional profiles of BrCa cells became similar upon equalizing FACT expression. In high-FACT cells, FACT supports expression of genes involved in the regulation of cell cycle, DNA replication, maintenance of an undifferentiated cell state and regulated by the activity of several proto-oncogenes. In low-FACT cells, the presence of FACT reduces expression of genes encoding enzymes of steroid metabolism that are characteristic of differentiated mammary epithelia. Thus, we propose that FACT is both a marker and a target of aggressive BrCa cells, whose inhibition results in the death of BrCa or convertion of them to a less aggressive subtype.