Cargando…

Spatiotemporal Mapping Techniques Show Clozapine Impairs Neurogenic and Myogenic Patterns of Activity in the Colon of the Rabbit in a Dose-Dependent Manner

Background: Clozapine, an antipsychotic used in treatment-resistant schizophrenia, has adverse gastrointestinal effects with significant associated morbidity and mortality. However, its effects on defined patterns of colonic contractile activity have not been assessed. Method: We used novel radial a...

Descripción completa

Detalles Bibliográficos
Autores principales: Every-Palmer, Susanna, Lentle, Roger G., Reynolds, Gordon, Hulls, Corrin, Chambers, Paul, Dunn, Helen, Ellis, Pete M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5401895/
https://www.ncbi.nlm.nih.gov/pubmed/28484390
http://dx.doi.org/10.3389/fphar.2017.00209
_version_ 1783231126759800832
author Every-Palmer, Susanna
Lentle, Roger G.
Reynolds, Gordon
Hulls, Corrin
Chambers, Paul
Dunn, Helen
Ellis, Pete M.
author_facet Every-Palmer, Susanna
Lentle, Roger G.
Reynolds, Gordon
Hulls, Corrin
Chambers, Paul
Dunn, Helen
Ellis, Pete M.
author_sort Every-Palmer, Susanna
collection PubMed
description Background: Clozapine, an antipsychotic used in treatment-resistant schizophrenia, has adverse gastrointestinal effects with significant associated morbidity and mortality. However, its effects on defined patterns of colonic contractile activity have not been assessed. Method: We used novel radial and longitudinal spatiotemporal mapping techniques, combined with and monitoring of ambient lumen pressure, in ex vivo preparations of triply and of singly haustrated portions of rabbit colon. We identified the contractile patterns of mass peristalses, fast phasic, and ripple contractions and directly qualified the effects of clozapine, at concentrations of 10 μmol/L, 20 μmol/L, and 30 μmol/L, and of norclozapine, the main metabolite of clozapine, on contractile patterns. The effects of carbachol, serotonin and naloxone on clozapine-exposed preparations were also determined. Tetradotoxin was used to distinguish neurogenic from myogenic contractions. Results: At 10 μmol/L, clozapine temporarily abolished the longitudinal contractile components of mass peristalsis, which on return were significantly reduced in number and amplitude, as was maximal mass peristaltic pressure. These effects were reversed by carbachol (1 μmol/L) and to some extent by serotonin (15 μmol/L). At 10 μmol/L, myogenic ripple contractions were not affected. At 20 μmol/L, clozapine had a similar but more marked effect on mass peristalses with both longitudinal and radial components and corresponding maximal pressure greatly reduced. At 30 μmol/L, clozapine suppressed the radial and longitudinal components of mass peristalses for over 30 min, as well as ripple contractions. Similar dose-related effects were observed on addition of clozapine to the mid colon. At 20 μmol/L, norclozapine had opposite effects to those of clozapine, causing an increase in the frequency of mass peristalsis with slight increases in basal tone. These slightly augmented contractions were abolished on addition of clozapine. Concentrations of norclozapine below 20 μmol/L had no discernible effects. Conclusion: Clozapine, but not norclozapine, has potent effects on the motility of the rabbit colon, inhibiting neurogenic contractions at lower concentrations and myogenic contractions at higher concentrations. This is the likely mechanism for the serious and life-threatening gastrointestinal complications seen in human clozapine-users. These effects appear to be mediated by cholinergic and serotonergic mechanisms. Spatiotemporal mapping is useful in directly assessing the effects of pharmaceuticals on particular patterns of gastrointestinal motility.
format Online
Article
Text
id pubmed-5401895
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-54018952017-05-08 Spatiotemporal Mapping Techniques Show Clozapine Impairs Neurogenic and Myogenic Patterns of Activity in the Colon of the Rabbit in a Dose-Dependent Manner Every-Palmer, Susanna Lentle, Roger G. Reynolds, Gordon Hulls, Corrin Chambers, Paul Dunn, Helen Ellis, Pete M. Front Pharmacol Pharmacology Background: Clozapine, an antipsychotic used in treatment-resistant schizophrenia, has adverse gastrointestinal effects with significant associated morbidity and mortality. However, its effects on defined patterns of colonic contractile activity have not been assessed. Method: We used novel radial and longitudinal spatiotemporal mapping techniques, combined with and monitoring of ambient lumen pressure, in ex vivo preparations of triply and of singly haustrated portions of rabbit colon. We identified the contractile patterns of mass peristalses, fast phasic, and ripple contractions and directly qualified the effects of clozapine, at concentrations of 10 μmol/L, 20 μmol/L, and 30 μmol/L, and of norclozapine, the main metabolite of clozapine, on contractile patterns. The effects of carbachol, serotonin and naloxone on clozapine-exposed preparations were also determined. Tetradotoxin was used to distinguish neurogenic from myogenic contractions. Results: At 10 μmol/L, clozapine temporarily abolished the longitudinal contractile components of mass peristalsis, which on return were significantly reduced in number and amplitude, as was maximal mass peristaltic pressure. These effects were reversed by carbachol (1 μmol/L) and to some extent by serotonin (15 μmol/L). At 10 μmol/L, myogenic ripple contractions were not affected. At 20 μmol/L, clozapine had a similar but more marked effect on mass peristalses with both longitudinal and radial components and corresponding maximal pressure greatly reduced. At 30 μmol/L, clozapine suppressed the radial and longitudinal components of mass peristalses for over 30 min, as well as ripple contractions. Similar dose-related effects were observed on addition of clozapine to the mid colon. At 20 μmol/L, norclozapine had opposite effects to those of clozapine, causing an increase in the frequency of mass peristalsis with slight increases in basal tone. These slightly augmented contractions were abolished on addition of clozapine. Concentrations of norclozapine below 20 μmol/L had no discernible effects. Conclusion: Clozapine, but not norclozapine, has potent effects on the motility of the rabbit colon, inhibiting neurogenic contractions at lower concentrations and myogenic contractions at higher concentrations. This is the likely mechanism for the serious and life-threatening gastrointestinal complications seen in human clozapine-users. These effects appear to be mediated by cholinergic and serotonergic mechanisms. Spatiotemporal mapping is useful in directly assessing the effects of pharmaceuticals on particular patterns of gastrointestinal motility. Frontiers Media S.A. 2017-04-24 /pmc/articles/PMC5401895/ /pubmed/28484390 http://dx.doi.org/10.3389/fphar.2017.00209 Text en Copyright © 2017 Every-Palmer, Lentle, Reynolds, Hulls, Chambers, Dunn and Ellis. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Pharmacology
Every-Palmer, Susanna
Lentle, Roger G.
Reynolds, Gordon
Hulls, Corrin
Chambers, Paul
Dunn, Helen
Ellis, Pete M.
Spatiotemporal Mapping Techniques Show Clozapine Impairs Neurogenic and Myogenic Patterns of Activity in the Colon of the Rabbit in a Dose-Dependent Manner
title Spatiotemporal Mapping Techniques Show Clozapine Impairs Neurogenic and Myogenic Patterns of Activity in the Colon of the Rabbit in a Dose-Dependent Manner
title_full Spatiotemporal Mapping Techniques Show Clozapine Impairs Neurogenic and Myogenic Patterns of Activity in the Colon of the Rabbit in a Dose-Dependent Manner
title_fullStr Spatiotemporal Mapping Techniques Show Clozapine Impairs Neurogenic and Myogenic Patterns of Activity in the Colon of the Rabbit in a Dose-Dependent Manner
title_full_unstemmed Spatiotemporal Mapping Techniques Show Clozapine Impairs Neurogenic and Myogenic Patterns of Activity in the Colon of the Rabbit in a Dose-Dependent Manner
title_short Spatiotemporal Mapping Techniques Show Clozapine Impairs Neurogenic and Myogenic Patterns of Activity in the Colon of the Rabbit in a Dose-Dependent Manner
title_sort spatiotemporal mapping techniques show clozapine impairs neurogenic and myogenic patterns of activity in the colon of the rabbit in a dose-dependent manner
topic Pharmacology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5401895/
https://www.ncbi.nlm.nih.gov/pubmed/28484390
http://dx.doi.org/10.3389/fphar.2017.00209
work_keys_str_mv AT everypalmersusanna spatiotemporalmappingtechniquesshowclozapineimpairsneurogenicandmyogenicpatternsofactivityinthecolonoftherabbitinadosedependentmanner
AT lentlerogerg spatiotemporalmappingtechniquesshowclozapineimpairsneurogenicandmyogenicpatternsofactivityinthecolonoftherabbitinadosedependentmanner
AT reynoldsgordon spatiotemporalmappingtechniquesshowclozapineimpairsneurogenicandmyogenicpatternsofactivityinthecolonoftherabbitinadosedependentmanner
AT hullscorrin spatiotemporalmappingtechniquesshowclozapineimpairsneurogenicandmyogenicpatternsofactivityinthecolonoftherabbitinadosedependentmanner
AT chamberspaul spatiotemporalmappingtechniquesshowclozapineimpairsneurogenicandmyogenicpatternsofactivityinthecolonoftherabbitinadosedependentmanner
AT dunnhelen spatiotemporalmappingtechniquesshowclozapineimpairsneurogenicandmyogenicpatternsofactivityinthecolonoftherabbitinadosedependentmanner
AT ellispetem spatiotemporalmappingtechniquesshowclozapineimpairsneurogenicandmyogenicpatternsofactivityinthecolonoftherabbitinadosedependentmanner