Cargando…

Insulin Growth Factor 1 Protects Neural Stem Cells Against Apoptosis Induced by Hypoxia Through Akt/Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase (Akt/MAPK/ERK) Pathway in Hypoxia-Ishchemic Encephalopathy

BACKGROUND: Insulin growth factor 1 (IGF-1) is reported to modulate cell growth and acts as potential therapy for traumatic brain injury. This study was designed to investigate the effect of IGF-1 on hypoxia-induced apoptosis in neural stem cells (NSCs). MATERIAL/METHODS: A hypoxia model was constru...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Bing, Zheng, Zebao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405785/
https://www.ncbi.nlm.nih.gov/pubmed/28420864
http://dx.doi.org/10.12659/MSM.901055
Descripción
Sumario:BACKGROUND: Insulin growth factor 1 (IGF-1) is reported to modulate cell growth and acts as potential therapy for traumatic brain injury. This study was designed to investigate the effect of IGF-1 on hypoxia-induced apoptosis in neural stem cells (NSCs). MATERIAL/METHODS: A hypoxia model was constructed using NSCs separated from the hippocampus of rat. NSCs were divided into four groups: cells under normoxic conditions that acted as controls (C group), cells under hypoxia (H group), cells under hypoxia with IGF-1 (HI group), and cells under hypoxia with IGF-1 as well as picropodophyllin (PPP), which acts as an inhibitor of the IGF-1 receptor (HIP group). The cell viability and apoptosis were respectively measured by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. Finally, the phosphorylation levels of apoptosis-associated proteins and key kinases in the phosphatidylinositol-3-kinase (PI3K)/AKT and the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways were detected by Western blot analysis. RESULTS: In comparison with the H group, the cell viability was increased while the cell apoptosis was reduced by IGF-1 in the HI group. Besides, the expression levels of Bax, cytochrome c, and activated caspase-3 were all improved in the H group, and the remarkable differences were eliminated in the HI group compared with the C group. The expression level of Bcl-2 was the opposite. Additionally, down-regulations of phosphorylated AKT, MAPK, and ERK induced by hypoxia were all improved by IGF-1. All the influences of IGF-1 were weakened by addition of PPP. CONCLUSIONS: IGF-1 increased cell viability while decreasing apoptosis in hypoxic NSCs through the PI3K/AKT and MAPK/ERK pathways.