Cargando…
AntagomiR-451 inhibits oxygen glucose deprivation (OGD)-induced HUVEC necrosis via activating AMPK signaling
Oxygen glucose deprivation (OGD) application in cultured human umbilical vein endothelial cells (HUVECs) mimics ischemic injuries. AntagomiR-451, the miroRNA-451 (“miR-451”) inhibitor, could activate pro-survival AMP-activated protein kinase (AMPK) signaling. In the current study, we showed that for...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405932/ https://www.ncbi.nlm.nih.gov/pubmed/28445531 http://dx.doi.org/10.1371/journal.pone.0175507 |
Sumario: | Oxygen glucose deprivation (OGD) application in cultured human umbilical vein endothelial cells (HUVECs) mimics ischemic injuries. AntagomiR-451, the miroRNA-451 (“miR-451”) inhibitor, could activate pro-survival AMP-activated protein kinase (AMPK) signaling. In the current study, we showed that forced-expression of antagomiR-451 depleted miRNA-451 and significantly attenuated OGD-induced necrosis of HUVECs. Activation of AMPK was required for antagomiR-451-mediated pro-survival actions. AMPK inhibition, by AMPKα shRNA or dominant negative mutation, almost completely abolishedantagomiR-451-mediated HUVEC protection again OGD. Reversely, forced-activation of AMPK by exogenous expression of constructively-active AMPKα inhibited OGD-induced HUVEC necrosis. At the molecular level, antagomiR-451 expression in HUVECs inhibited OGD-induced programmed necrosis, the latter was evidenced by mitochondrial p53-cyclophilinD (Cyp-D) association, mitochondrial depolarization as well as reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) breach. Together, we suggest that antagomiR-451 activates AMPK to inhibit OGD-induced programmed necrosis in HUVECs. |
---|