Cargando…
Suppressors of cytokine signaling: Potential immune checkpoint molecules for cancer immunotherapy
Inhibition of immune checkpoint molecules, PD‐1 and CTLA4, has been shown to be a promising cancer treatment. PD‐1 and CTLA4 inhibit TCR and co‐stimulatory signals. The third T cell activation signal represents the signals from the cytokine receptors. The cytokine interferon‐γ (IFNγ) plays an import...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5406529/ https://www.ncbi.nlm.nih.gov/pubmed/28188673 http://dx.doi.org/10.1111/cas.13194 |
Sumario: | Inhibition of immune checkpoint molecules, PD‐1 and CTLA4, has been shown to be a promising cancer treatment. PD‐1 and CTLA4 inhibit TCR and co‐stimulatory signals. The third T cell activation signal represents the signals from the cytokine receptors. The cytokine interferon‐γ (IFNγ) plays an important role in anti‐tumor immunity by activating cytotoxic T cells (CTLs). Most cytokines use the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, and the suppressors of cytokine signaling (SOCS) family of proteins are major negative regulators of the JAK/STAT pathway. Among SOCS proteins, CIS, SOCS1, and SOCS3 proteins can be considered the third immunocheckpoint molecules since they regulate cytokine signals that control the polarization of CD4(+) T cells and the maturation of CD8(+) T cells. This review summarizes recent progress on CIS, SOCS1, and SOCS3 in terms of their anti‐tumor immunity and potential applications. |
---|