Cargando…
Complementary oligonucleotides regulate induced fit ligand binding in duplexed aptamers
Duplexed aptamers (DAs) are engineered by hybridizing an aptamer-complementary element (ACE, e.g. a DNA oligonucleotide) to an aptamer; to date, ACEs have been presumed to sequester the aptamer into a non-binding duplex state, in line with a conformational selection-based model of ligand binding. He...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408566/ https://www.ncbi.nlm.nih.gov/pubmed/28507681 http://dx.doi.org/10.1039/c6sc03993f |
_version_ | 1783232335256223744 |
---|---|
author | Munzar, Jeffrey D. Ng, Andy Corrado, Mario Juncker, David |
author_facet | Munzar, Jeffrey D. Ng, Andy Corrado, Mario Juncker, David |
author_sort | Munzar, Jeffrey D. |
collection | PubMed |
description | Duplexed aptamers (DAs) are engineered by hybridizing an aptamer-complementary element (ACE, e.g. a DNA oligonucleotide) to an aptamer; to date, ACEs have been presumed to sequester the aptamer into a non-binding duplex state, in line with a conformational selection-based model of ligand binding. Here, we uncover that DAs can actively bind a ligand from the duplex state through an ACE-regulated induced fit mechanism. Using a widely-studied ATP DNA aptamer and a solution-based equilibrium assay, DAs were found to exhibit affinities up to 1 000 000-fold higher than predicted by conformational selection alone, with different ACEs regulating the level of induced fit binding, as well as the cooperative allostery of the DA (Hill slope of 1.8 to 0.7). To validate these unexpected findings, we developed a non-equilibrium surface-based assay that only signals induced fit binding, and corroborated the results from the solution-based assay. Our findings indicate that ACEs regulate ATP DA ligand binding dynamics, opening new avenues for the study and design of ligand-responsive nucleic acids. |
format | Online Article Text |
id | pubmed-5408566 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-54085662017-05-15 Complementary oligonucleotides regulate induced fit ligand binding in duplexed aptamers Munzar, Jeffrey D. Ng, Andy Corrado, Mario Juncker, David Chem Sci Chemistry Duplexed aptamers (DAs) are engineered by hybridizing an aptamer-complementary element (ACE, e.g. a DNA oligonucleotide) to an aptamer; to date, ACEs have been presumed to sequester the aptamer into a non-binding duplex state, in line with a conformational selection-based model of ligand binding. Here, we uncover that DAs can actively bind a ligand from the duplex state through an ACE-regulated induced fit mechanism. Using a widely-studied ATP DNA aptamer and a solution-based equilibrium assay, DAs were found to exhibit affinities up to 1 000 000-fold higher than predicted by conformational selection alone, with different ACEs regulating the level of induced fit binding, as well as the cooperative allostery of the DA (Hill slope of 1.8 to 0.7). To validate these unexpected findings, we developed a non-equilibrium surface-based assay that only signals induced fit binding, and corroborated the results from the solution-based assay. Our findings indicate that ACEs regulate ATP DA ligand binding dynamics, opening new avenues for the study and design of ligand-responsive nucleic acids. Royal Society of Chemistry 2017-03-01 2016-12-08 /pmc/articles/PMC5408566/ /pubmed/28507681 http://dx.doi.org/10.1039/c6sc03993f Text en This journal is © The Royal Society of Chemistry 2016 http://creativecommons.org/licenses/by/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 Unported License (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Chemistry Munzar, Jeffrey D. Ng, Andy Corrado, Mario Juncker, David Complementary oligonucleotides regulate induced fit ligand binding in duplexed aptamers |
title | Complementary oligonucleotides regulate induced fit ligand binding in duplexed aptamers
|
title_full | Complementary oligonucleotides regulate induced fit ligand binding in duplexed aptamers
|
title_fullStr | Complementary oligonucleotides regulate induced fit ligand binding in duplexed aptamers
|
title_full_unstemmed | Complementary oligonucleotides regulate induced fit ligand binding in duplexed aptamers
|
title_short | Complementary oligonucleotides regulate induced fit ligand binding in duplexed aptamers
|
title_sort | complementary oligonucleotides regulate induced fit ligand binding in duplexed aptamers |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408566/ https://www.ncbi.nlm.nih.gov/pubmed/28507681 http://dx.doi.org/10.1039/c6sc03993f |
work_keys_str_mv | AT munzarjeffreyd complementaryoligonucleotidesregulateinducedfitligandbindinginduplexedaptamers AT ngandy complementaryoligonucleotidesregulateinducedfitligandbindinginduplexedaptamers AT corradomario complementaryoligonucleotidesregulateinducedfitligandbindinginduplexedaptamers AT junckerdavid complementaryoligonucleotidesregulateinducedfitligandbindinginduplexedaptamers |