Cargando…

Predicting Drug-Induced Cholestasis with the Help of Hepatic Transporters—An in Silico Modeling Approach

[Image: see text] Cholestasis represents one out of three types of drug induced liver injury (DILI), which comprises a major challenge in drug development. In this study we applied a two-class classification scheme based on k-nearest neighbors in order to predict cholestasis, using a set of 93 two-d...

Descripción completa

Detalles Bibliográficos
Autores principales: Kotsampasakou, Eleni, Ecker, Gerhard F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5411109/
https://www.ncbi.nlm.nih.gov/pubmed/28166633
http://dx.doi.org/10.1021/acs.jcim.6b00518
Descripción
Sumario:[Image: see text] Cholestasis represents one out of three types of drug induced liver injury (DILI), which comprises a major challenge in drug development. In this study we applied a two-class classification scheme based on k-nearest neighbors in order to predict cholestasis, using a set of 93 two-dimensional (2D) physicochemical descriptors and predictions of selected hepatic transporters’ inhibition (BSEP, BCRP, P-gp, OATP1B1, and OATP1B3). In order to assess the potential contribution of transporter inhibition, we compared whether the inclusion of the transporters’ inhibition predictions contributes to a significant increase in model performance in comparison to the plain use of the 93 2D physicochemical descriptors. Our findings were in agreement with literature findings, indicating a contribution not only from BSEP inhibition but a rather synergistic effect deriving from the whole set of transporters. The final optimal model was validated via both 10-fold cross validation and external validation. It performs quite satisfactorily resulting in 0.686 ± 0.013 for accuracy and 0.722 ± 0.014 for area under the receiver operating characteristic curve (AUC) for 10-fold cross-validation (mean ± standard deviation from 50 iterations).