Cargando…
Effects of sodium diacetate on the fermentation profile, chemical composition and aerobic stability of alfalfa silage
OBJECTIVE: The objective of this study was to evaluate the effect of sodium diacetate (SDA) on fermentation profile, chemical composition and aerobic stability of alfalfa (Medicago sativa L.) silage. METHODS: Fresh alfalfa was ensiled with various concentrations of SDA (0, 3, 5, 7, and 9 g/kg of fre...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST)
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5411843/ https://www.ncbi.nlm.nih.gov/pubmed/28111451 http://dx.doi.org/10.5713/ajas.16.0773 |
_version_ | 1783232874591289344 |
---|---|
author | Yuan, XianJun Wen, AiYou Desta, Seare T. Wang, Jian Shao, Tao |
author_facet | Yuan, XianJun Wen, AiYou Desta, Seare T. Wang, Jian Shao, Tao |
author_sort | Yuan, XianJun |
collection | PubMed |
description | OBJECTIVE: The objective of this study was to evaluate the effect of sodium diacetate (SDA) on fermentation profile, chemical composition and aerobic stability of alfalfa (Medicago sativa L.) silage. METHODS: Fresh alfalfa was ensiled with various concentrations of SDA (0, 3, 5, 7, and 9 g/kg of fresh forage). After 60 days of the ensiling, the samples were collected to examine the fermentative quality, chemical composition and aerobic stability. RESULTS: The application of SDA significantly (p<0.05) decreased silage pH with the lowest value in silage with 7 g/kg of SDA. The proliferations of enterobacteria, yeasts, molds and clostridia were inhibited by SDA, resulted in lower ethanol, propionic and butyric acid concentrations and dry matter loss in SDA treated silages than control. The increasing SDA linearly decreased free amino acid N (p<0.001), ammonia N (p = 0.018) and non-protein N (p<0.001), while linearly increased water soluble carbohydrate (p<0.001) and peptide N (p<0.001). It is speculated that SDA accelerated the shift from homofermentative to heterofermentative lactic acid bacteria during the silage fermentation, indicated by lower lactic acid production in SDA-9 than SDA-7 silages after 60 days of ensiling. Alfalfa silages treated with SDA at 7 g/kg had highest Flieg’s point and remained stable more than 9 d during aerobic exposure under humid and hot conditions in southern China. CONCLUSION: SDA may be used as an additive for alfalfa silages at a level of 7 g/kg. |
format | Online Article Text |
id | pubmed-5411843 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST) |
record_format | MEDLINE/PubMed |
spelling | pubmed-54118432017-06-01 Effects of sodium diacetate on the fermentation profile, chemical composition and aerobic stability of alfalfa silage Yuan, XianJun Wen, AiYou Desta, Seare T. Wang, Jian Shao, Tao Asian-Australas J Anim Sci Article OBJECTIVE: The objective of this study was to evaluate the effect of sodium diacetate (SDA) on fermentation profile, chemical composition and aerobic stability of alfalfa (Medicago sativa L.) silage. METHODS: Fresh alfalfa was ensiled with various concentrations of SDA (0, 3, 5, 7, and 9 g/kg of fresh forage). After 60 days of the ensiling, the samples were collected to examine the fermentative quality, chemical composition and aerobic stability. RESULTS: The application of SDA significantly (p<0.05) decreased silage pH with the lowest value in silage with 7 g/kg of SDA. The proliferations of enterobacteria, yeasts, molds and clostridia were inhibited by SDA, resulted in lower ethanol, propionic and butyric acid concentrations and dry matter loss in SDA treated silages than control. The increasing SDA linearly decreased free amino acid N (p<0.001), ammonia N (p = 0.018) and non-protein N (p<0.001), while linearly increased water soluble carbohydrate (p<0.001) and peptide N (p<0.001). It is speculated that SDA accelerated the shift from homofermentative to heterofermentative lactic acid bacteria during the silage fermentation, indicated by lower lactic acid production in SDA-9 than SDA-7 silages after 60 days of ensiling. Alfalfa silages treated with SDA at 7 g/kg had highest Flieg’s point and remained stable more than 9 d during aerobic exposure under humid and hot conditions in southern China. CONCLUSION: SDA may be used as an additive for alfalfa silages at a level of 7 g/kg. Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST) 2017-06 2016-12-26 /pmc/articles/PMC5411843/ /pubmed/28111451 http://dx.doi.org/10.5713/ajas.16.0773 Text en Copyright © 2017 by Asian-Australasian Journal of Animal Sciences This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Article Yuan, XianJun Wen, AiYou Desta, Seare T. Wang, Jian Shao, Tao Effects of sodium diacetate on the fermentation profile, chemical composition and aerobic stability of alfalfa silage |
title | Effects of sodium diacetate on the fermentation profile, chemical composition and aerobic stability of alfalfa silage |
title_full | Effects of sodium diacetate on the fermentation profile, chemical composition and aerobic stability of alfalfa silage |
title_fullStr | Effects of sodium diacetate on the fermentation profile, chemical composition and aerobic stability of alfalfa silage |
title_full_unstemmed | Effects of sodium diacetate on the fermentation profile, chemical composition and aerobic stability of alfalfa silage |
title_short | Effects of sodium diacetate on the fermentation profile, chemical composition and aerobic stability of alfalfa silage |
title_sort | effects of sodium diacetate on the fermentation profile, chemical composition and aerobic stability of alfalfa silage |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5411843/ https://www.ncbi.nlm.nih.gov/pubmed/28111451 http://dx.doi.org/10.5713/ajas.16.0773 |
work_keys_str_mv | AT yuanxianjun effectsofsodiumdiacetateonthefermentationprofilechemicalcompositionandaerobicstabilityofalfalfasilage AT wenaiyou effectsofsodiumdiacetateonthefermentationprofilechemicalcompositionandaerobicstabilityofalfalfasilage AT destasearet effectsofsodiumdiacetateonthefermentationprofilechemicalcompositionandaerobicstabilityofalfalfasilage AT wangjian effectsofsodiumdiacetateonthefermentationprofilechemicalcompositionandaerobicstabilityofalfalfasilage AT shaotao effectsofsodiumdiacetateonthefermentationprofilechemicalcompositionandaerobicstabilityofalfalfasilage |