Cargando…

Enzyme discovery beyond homology: a unique hydroxynitrile lyase in the Bet v1 superfamily

Homology and similarity based approaches are most widely used for the identification of new enzymes for biocatalysis. However, they are not suitable to find truly novel scaffolds with a desired function and this averts options and diversity. Hydroxynitrile lyases (HNLs) are an example of non-homolog...

Descripción completa

Detalles Bibliográficos
Autores principales: Lanfranchi, Elisa, Pavkov-Keller, Tea, Koehler, Eva-Maria, Diepold, Matthias, Steiner, Kerstin, Darnhofer, Barbara, Hartler, Jürgen, Van Den Bergh, Tom, Joosten, Henk-Jan, Gruber-Khadjawi, Mandana, Thallinger, Gerhard G., Birner-Gruenberger, Ruth, Gruber, Karl, Winkler, Margit, Glieder, Anton
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413884/
https://www.ncbi.nlm.nih.gov/pubmed/28466867
http://dx.doi.org/10.1038/srep46738
Descripción
Sumario:Homology and similarity based approaches are most widely used for the identification of new enzymes for biocatalysis. However, they are not suitable to find truly novel scaffolds with a desired function and this averts options and diversity. Hydroxynitrile lyases (HNLs) are an example of non-homologous isofunctional enzymes for the synthesis of chiral cyanohydrins. Due to their convergent evolution, finding new representatives is challenging. Here we show the discovery of unique HNL enzymes from the fern Davallia tyermannii by coalescence of transcriptomics, proteomics and enzymatic screening. It is the first protein with a Bet v1-like protein fold exhibiting HNL activity, and has a new catalytic center, as shown by protein crystallography. Biochemical properties of D. tyermannii HNLs open perspectives for the development of a complementary class of biocatalysts for the stereoselective synthesis of cyanohydrins. This work shows that systematic integration of -omics data facilitates discovery of enzymes with unpredictable sequences and helps to extend our knowledge about enzyme diversity.