Cargando…

Vitexin protects against hypoxic-ischemic injury via inhibiting Ca(2+)/Calmodulin-dependent protein kinase II and apoptosis signaling in the neonatal mouse brain

Neonatal hypoxic-ischemic is a major cause of death and disability in neonates. In this study, we suggest for the first time that pretreatment with vitexin may suppress a pro-apoptotic signaling pathway in hypoxic-ischemic neuronal injury in neonates by inhibition of the phosphorylation of Ca(2+)/Ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Min, Jia-Wei, Kong, Wei-Lin, Han, Song, Bsoul, Nageeb, Liu, Wan-Hong, He, Xiao-Hua, Sanchez, Russell M., Peng, Bi-Wen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421947/
https://www.ncbi.nlm.nih.gov/pubmed/28424420
http://dx.doi.org/10.18632/oncotarget.16065
Descripción
Sumario:Neonatal hypoxic-ischemic is a major cause of death and disability in neonates. In this study, we suggest for the first time that pretreatment with vitexin may suppress a pro-apoptotic signaling pathway in hypoxic-ischemic neuronal injury in neonates by inhibition of the phosphorylation of Ca(2+)/Calmodulin-dependent protein kinase II. Here we found that vitexin pretreatment reduced brain infarct volume in a dose-dependent manner. In addition, vitexin decreased the number of TUNEL-positive cells and brain atrophy. Furthermore, vitexin improved neurobehavioral outcomes. Vitexin also reduced oxygen glucose deprivation-induced neuronal injury and calcium entry. Vitexin pretreatment increased the Bcl-2/Bax protein ratio and decreased phosphorylation of Ca(2+)/Calmodulin-dependent protein kinase II and NF-κB, cleaved caspase-3 protein expression 24 hours after injury. Our data indicate that pretreatment with vitexin protects against neonatal hypoxic-ischemic brain injury and thus has potential as a treatment for hypoxic-ischemic brain injury.