Cargando…
Vitexin protects against hypoxic-ischemic injury via inhibiting Ca(2+)/Calmodulin-dependent protein kinase II and apoptosis signaling in the neonatal mouse brain
Neonatal hypoxic-ischemic is a major cause of death and disability in neonates. In this study, we suggest for the first time that pretreatment with vitexin may suppress a pro-apoptotic signaling pathway in hypoxic-ischemic neuronal injury in neonates by inhibition of the phosphorylation of Ca(2+)/Ca...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5421947/ https://www.ncbi.nlm.nih.gov/pubmed/28424420 http://dx.doi.org/10.18632/oncotarget.16065 |
Sumario: | Neonatal hypoxic-ischemic is a major cause of death and disability in neonates. In this study, we suggest for the first time that pretreatment with vitexin may suppress a pro-apoptotic signaling pathway in hypoxic-ischemic neuronal injury in neonates by inhibition of the phosphorylation of Ca(2+)/Calmodulin-dependent protein kinase II. Here we found that vitexin pretreatment reduced brain infarct volume in a dose-dependent manner. In addition, vitexin decreased the number of TUNEL-positive cells and brain atrophy. Furthermore, vitexin improved neurobehavioral outcomes. Vitexin also reduced oxygen glucose deprivation-induced neuronal injury and calcium entry. Vitexin pretreatment increased the Bcl-2/Bax protein ratio and decreased phosphorylation of Ca(2+)/Calmodulin-dependent protein kinase II and NF-κB, cleaved caspase-3 protein expression 24 hours after injury. Our data indicate that pretreatment with vitexin protects against neonatal hypoxic-ischemic brain injury and thus has potential as a treatment for hypoxic-ischemic brain injury. |
---|