Cargando…

Model-free extraction of spin label position distributions from pseudocontact shift data

A significant problem with paramagnetic tags attached to proteins and nucleic acids is their conformational mobility. Each tag is statistically distributed within a volume between 5 and 10 Angstroms across; structural biology conclusions from NMR and EPR work are necessarily diluted by this uncertai...

Descripción completa

Detalles Bibliográficos
Autores principales: Suturina, Elizaveta A., Häussinger, Daniel, Zimmermann, Kaspar, Garbuio, Luca, Yulikov, Maxim, Jeschke, Gunnar, Kuprov, Ilya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5426344/
https://www.ncbi.nlm.nih.gov/pubmed/28553510
http://dx.doi.org/10.1039/c6sc03736d
_version_ 1783235458052915200
author Suturina, Elizaveta A.
Häussinger, Daniel
Zimmermann, Kaspar
Garbuio, Luca
Yulikov, Maxim
Jeschke, Gunnar
Kuprov, Ilya
author_facet Suturina, Elizaveta A.
Häussinger, Daniel
Zimmermann, Kaspar
Garbuio, Luca
Yulikov, Maxim
Jeschke, Gunnar
Kuprov, Ilya
author_sort Suturina, Elizaveta A.
collection PubMed
description A significant problem with paramagnetic tags attached to proteins and nucleic acids is their conformational mobility. Each tag is statistically distributed within a volume between 5 and 10 Angstroms across; structural biology conclusions from NMR and EPR work are necessarily diluted by this uncertainty. The problem is solved in electron spin resonance, but remains open in the other major branch of paramagnetic resonance – pseudocontact shift (PCS) NMR spectroscopy, where structural biologists have so far been reluctantly using the point paramagnetic centre approximation. Here we describe a new method for extracting probability densities of lanthanide tags from PCS data. The method relies on Tikhonov-regularised 3D reconstruction and opens a new window into biomolecular structure and dynamics because it explores a very different range of conditions from those accessible to double electron resonance work on paramagnetic tags: a room-temperature solution rather than a glass at cryogenic temperatures. The method is illustrated using four different Tm(3+) DOTA-M8 tagged mutants of human carbonic anhydrase II; the results are in good agreement with rotamer library and DEER data. The wealth of high-quality pseudocontact shift data accumulated by the biological magnetic resonance community over the last 30 years, and so far only processed using point models, could now become a major source of useful information on conformational distributions of paramagnetic tags in biomolecules.
format Online
Article
Text
id pubmed-5426344
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-54263442017-05-26 Model-free extraction of spin label position distributions from pseudocontact shift data Suturina, Elizaveta A. Häussinger, Daniel Zimmermann, Kaspar Garbuio, Luca Yulikov, Maxim Jeschke, Gunnar Kuprov, Ilya Chem Sci Chemistry A significant problem with paramagnetic tags attached to proteins and nucleic acids is their conformational mobility. Each tag is statistically distributed within a volume between 5 and 10 Angstroms across; structural biology conclusions from NMR and EPR work are necessarily diluted by this uncertainty. The problem is solved in electron spin resonance, but remains open in the other major branch of paramagnetic resonance – pseudocontact shift (PCS) NMR spectroscopy, where structural biologists have so far been reluctantly using the point paramagnetic centre approximation. Here we describe a new method for extracting probability densities of lanthanide tags from PCS data. The method relies on Tikhonov-regularised 3D reconstruction and opens a new window into biomolecular structure and dynamics because it explores a very different range of conditions from those accessible to double electron resonance work on paramagnetic tags: a room-temperature solution rather than a glass at cryogenic temperatures. The method is illustrated using four different Tm(3+) DOTA-M8 tagged mutants of human carbonic anhydrase II; the results are in good agreement with rotamer library and DEER data. The wealth of high-quality pseudocontact shift data accumulated by the biological magnetic resonance community over the last 30 years, and so far only processed using point models, could now become a major source of useful information on conformational distributions of paramagnetic tags in biomolecules. Royal Society of Chemistry 2017-04-01 2017-01-20 /pmc/articles/PMC5426344/ /pubmed/28553510 http://dx.doi.org/10.1039/c6sc03736d Text en This journal is © The Royal Society of Chemistry 2017 http://creativecommons.org/licenses/by/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 Unported License (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Chemistry
Suturina, Elizaveta A.
Häussinger, Daniel
Zimmermann, Kaspar
Garbuio, Luca
Yulikov, Maxim
Jeschke, Gunnar
Kuprov, Ilya
Model-free extraction of spin label position distributions from pseudocontact shift data
title Model-free extraction of spin label position distributions from pseudocontact shift data
title_full Model-free extraction of spin label position distributions from pseudocontact shift data
title_fullStr Model-free extraction of spin label position distributions from pseudocontact shift data
title_full_unstemmed Model-free extraction of spin label position distributions from pseudocontact shift data
title_short Model-free extraction of spin label position distributions from pseudocontact shift data
title_sort model-free extraction of spin label position distributions from pseudocontact shift data
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5426344/
https://www.ncbi.nlm.nih.gov/pubmed/28553510
http://dx.doi.org/10.1039/c6sc03736d
work_keys_str_mv AT suturinaelizavetaa modelfreeextractionofspinlabelpositiondistributionsfrompseudocontactshiftdata
AT haussingerdaniel modelfreeextractionofspinlabelpositiondistributionsfrompseudocontactshiftdata
AT zimmermannkaspar modelfreeextractionofspinlabelpositiondistributionsfrompseudocontactshiftdata
AT garbuioluca modelfreeextractionofspinlabelpositiondistributionsfrompseudocontactshiftdata
AT yulikovmaxim modelfreeextractionofspinlabelpositiondistributionsfrompseudocontactshiftdata
AT jeschkegunnar modelfreeextractionofspinlabelpositiondistributionsfrompseudocontactshiftdata
AT kuprovilya modelfreeextractionofspinlabelpositiondistributionsfrompseudocontactshiftdata