Cargando…
Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies
Predicting the structure of large molecular assemblies remains a challenging task in structural biology when using integrative modeling approaches. One of the main issues stems from the treatment of heterogeneous experimental data used to predict the architecture of native complexes. We propose a ne...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427971/ https://www.ncbi.nlm.nih.gov/pubmed/28331186 http://dx.doi.org/10.1038/s41598-017-00266-w |
_version_ | 1783235731799408640 |
---|---|
author | Tamò, Giorgio Maesani, Andrea Träger, Sylvain Degiacomi, Matteo T. Floreano, Dario Dal Peraro, Matteo |
author_facet | Tamò, Giorgio Maesani, Andrea Träger, Sylvain Degiacomi, Matteo T. Floreano, Dario Dal Peraro, Matteo |
author_sort | Tamò, Giorgio |
collection | PubMed |
description | Predicting the structure of large molecular assemblies remains a challenging task in structural biology when using integrative modeling approaches. One of the main issues stems from the treatment of heterogeneous experimental data used to predict the architecture of native complexes. We propose a new method, applied here for the first time to a set of symmetrical complexes, based on evolutionary computation that treats every available experimental input independently, bypassing the need to balance weight components assigned to aggregated fitness functions during optimization. |
format | Online Article Text |
id | pubmed-5427971 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-54279712017-05-15 Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies Tamò, Giorgio Maesani, Andrea Träger, Sylvain Degiacomi, Matteo T. Floreano, Dario Dal Peraro, Matteo Sci Rep Article Predicting the structure of large molecular assemblies remains a challenging task in structural biology when using integrative modeling approaches. One of the main issues stems from the treatment of heterogeneous experimental data used to predict the architecture of native complexes. We propose a new method, applied here for the first time to a set of symmetrical complexes, based on evolutionary computation that treats every available experimental input independently, bypassing the need to balance weight components assigned to aggregated fitness functions during optimization. Nature Publishing Group UK 2017-03-22 /pmc/articles/PMC5427971/ /pubmed/28331186 http://dx.doi.org/10.1038/s41598-017-00266-w Text en © The Author(s) 2017 This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Tamò, Giorgio Maesani, Andrea Träger, Sylvain Degiacomi, Matteo T. Floreano, Dario Dal Peraro, Matteo Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies |
title | Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies |
title_full | Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies |
title_fullStr | Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies |
title_full_unstemmed | Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies |
title_short | Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies |
title_sort | disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427971/ https://www.ncbi.nlm.nih.gov/pubmed/28331186 http://dx.doi.org/10.1038/s41598-017-00266-w |
work_keys_str_mv | AT tamogiorgio disentanglingconstraintsusingviabilityevolutionprinciplesinintegrativemodelingofmacromolecularassemblies AT maesaniandrea disentanglingconstraintsusingviabilityevolutionprinciplesinintegrativemodelingofmacromolecularassemblies AT tragersylvain disentanglingconstraintsusingviabilityevolutionprinciplesinintegrativemodelingofmacromolecularassemblies AT degiacomimatteot disentanglingconstraintsusingviabilityevolutionprinciplesinintegrativemodelingofmacromolecularassemblies AT floreanodario disentanglingconstraintsusingviabilityevolutionprinciplesinintegrativemodelingofmacromolecularassemblies AT dalperaromatteo disentanglingconstraintsusingviabilityevolutionprinciplesinintegrativemodelingofmacromolecularassemblies |