Cargando…

Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies

Predicting the structure of large molecular assemblies remains a challenging task in structural biology when using integrative modeling approaches. One of the main issues stems from the treatment of heterogeneous experimental data used to predict the architecture of native complexes. We propose a ne...

Descripción completa

Detalles Bibliográficos
Autores principales: Tamò, Giorgio, Maesani, Andrea, Träger, Sylvain, Degiacomi, Matteo T., Floreano, Dario, Dal Peraro, Matteo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427971/
https://www.ncbi.nlm.nih.gov/pubmed/28331186
http://dx.doi.org/10.1038/s41598-017-00266-w
_version_ 1783235731799408640
author Tamò, Giorgio
Maesani, Andrea
Träger, Sylvain
Degiacomi, Matteo T.
Floreano, Dario
Dal Peraro, Matteo
author_facet Tamò, Giorgio
Maesani, Andrea
Träger, Sylvain
Degiacomi, Matteo T.
Floreano, Dario
Dal Peraro, Matteo
author_sort Tamò, Giorgio
collection PubMed
description Predicting the structure of large molecular assemblies remains a challenging task in structural biology when using integrative modeling approaches. One of the main issues stems from the treatment of heterogeneous experimental data used to predict the architecture of native complexes. We propose a new method, applied here for the first time to a set of symmetrical complexes, based on evolutionary computation that treats every available experimental input independently, bypassing the need to balance weight components assigned to aggregated fitness functions during optimization.
format Online
Article
Text
id pubmed-5427971
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-54279712017-05-15 Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies Tamò, Giorgio Maesani, Andrea Träger, Sylvain Degiacomi, Matteo T. Floreano, Dario Dal Peraro, Matteo Sci Rep Article Predicting the structure of large molecular assemblies remains a challenging task in structural biology when using integrative modeling approaches. One of the main issues stems from the treatment of heterogeneous experimental data used to predict the architecture of native complexes. We propose a new method, applied here for the first time to a set of symmetrical complexes, based on evolutionary computation that treats every available experimental input independently, bypassing the need to balance weight components assigned to aggregated fitness functions during optimization. Nature Publishing Group UK 2017-03-22 /pmc/articles/PMC5427971/ /pubmed/28331186 http://dx.doi.org/10.1038/s41598-017-00266-w Text en © The Author(s) 2017 This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Tamò, Giorgio
Maesani, Andrea
Träger, Sylvain
Degiacomi, Matteo T.
Floreano, Dario
Dal Peraro, Matteo
Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies
title Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies
title_full Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies
title_fullStr Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies
title_full_unstemmed Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies
title_short Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies
title_sort disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427971/
https://www.ncbi.nlm.nih.gov/pubmed/28331186
http://dx.doi.org/10.1038/s41598-017-00266-w
work_keys_str_mv AT tamogiorgio disentanglingconstraintsusingviabilityevolutionprinciplesinintegrativemodelingofmacromolecularassemblies
AT maesaniandrea disentanglingconstraintsusingviabilityevolutionprinciplesinintegrativemodelingofmacromolecularassemblies
AT tragersylvain disentanglingconstraintsusingviabilityevolutionprinciplesinintegrativemodelingofmacromolecularassemblies
AT degiacomimatteot disentanglingconstraintsusingviabilityevolutionprinciplesinintegrativemodelingofmacromolecularassemblies
AT floreanodario disentanglingconstraintsusingviabilityevolutionprinciplesinintegrativemodelingofmacromolecularassemblies
AT dalperaromatteo disentanglingconstraintsusingviabilityevolutionprinciplesinintegrativemodelingofmacromolecularassemblies