Cargando…

Bilirubin augments Ca(2+) load of developing bushy neurons by targeting specific subtype of voltage-gated calcium channels

Neonatal brain is particularly vulnerable to pathological levels of bilirubin which elevates and overloads intracellular Ca(2+), leading to neurotoxicity. However, how voltage-gated calcium channels (VGCCs) are functionally involved in excess calcium influx remains unknown. By performing voltage-cla...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Min, Yin, Xin-Lu, Shi, Hai-Bo, Li, Chun-Yan, Li, Xin-Yi, Song, Ning-Ying, Shi, Hao-Song, Zhao, Yi, Wang, Lu-Yang, Yin, Shan-Kai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427978/
https://www.ncbi.nlm.nih.gov/pubmed/28348377
http://dx.doi.org/10.1038/s41598-017-00275-9
Descripción
Sumario:Neonatal brain is particularly vulnerable to pathological levels of bilirubin which elevates and overloads intracellular Ca(2+), leading to neurotoxicity. However, how voltage-gated calcium channels (VGCCs) are functionally involved in excess calcium influx remains unknown. By performing voltage-clamp recordings from bushy cells in the ventral cochlear nucleus (VCN) in postnatal rat pups (P4-17), we found the total calcium current density was more than doubled over P4-17, but the relative weight of VGCC subtypes changed dramatically, being relatively equal among T, L, N, P/Q and R-type at P4-6 to predominantly L, N, R over T and P/Q at P15-17. Surprisingly, acute administration of bilirubin augmented the VGCC currents specifically mediated by high voltage-activated (HVA) P/Q-type calcium currents. This augment was attenuated by intracellular loading of Ca(2+) buffer EGTA or calmodulin inhibitory peptide. Our findings indicate that acute exposure to bilirubin increases VGCC currents, primarily by targeting P/Q-type calcium channels via Ca(2+) and calmodulin dependent mechanisms to overwhelm neurons with excessive Ca(2+). Since P/Q-subtype calcium channels are more prominent in neonatal neurons (e.g. P4-6) than later stages, we suggest this subtype-specific enhancement of P/Q-type Ca(2+) currents likely contributes to the early neuronal vulnerability to hyperbilirubinemia in auditory and other brain regions.