Cargando…

Network-assisted analysis of GWAS data identifies a functionally-relevant gene module for childhood-onset asthma

The number of genetic factors associated with asthma remains limited. To identify new genes with an undetected individual effect but collectively influencing asthma risk, we conducted a network-assisted analysis that integrates outcomes of genome-wide association studies (GWAS) and protein-protein i...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Y., Brossard, M., Sarnowski, C., Vaysse, A., Moffatt, M., Margaritte-Jeannin, P., Llinares-López, F., Dizier, M. H., Lathrop, M., Cookson, W., Bouzigon, E., Demenais, F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430538/
https://www.ncbi.nlm.nih.gov/pubmed/28428554
http://dx.doi.org/10.1038/s41598-017-01058-y
_version_ 1783236235406344192
author Liu, Y.
Brossard, M.
Sarnowski, C.
Vaysse, A.
Moffatt, M.
Margaritte-Jeannin, P.
Llinares-López, F.
Dizier, M. H.
Lathrop, M.
Cookson, W.
Bouzigon, E.
Demenais, F.
author_facet Liu, Y.
Brossard, M.
Sarnowski, C.
Vaysse, A.
Moffatt, M.
Margaritte-Jeannin, P.
Llinares-López, F.
Dizier, M. H.
Lathrop, M.
Cookson, W.
Bouzigon, E.
Demenais, F.
author_sort Liu, Y.
collection PubMed
description The number of genetic factors associated with asthma remains limited. To identify new genes with an undetected individual effect but collectively influencing asthma risk, we conducted a network-assisted analysis that integrates outcomes of genome-wide association studies (GWAS) and protein-protein interaction networks. We used two GWAS datasets, each consisting of the results of a meta-analysis of nine childhood-onset asthma GWASs (5,924 and 6,043 subjects, respectively). We developed a novel method to compute gene-level P-values (fastCGP), and proposed a parallel dense-module search and cross-selection strategy to identify an asthma-associated gene module. We identified a module of 91 genes with a significant joint effect on childhood-onset asthma (P < 10(−5)). This module contained a core subnetwork including genes at known asthma loci and five peripheral subnetworks including relevant candidates. Notably, the core genes were connected to APP (encoding amyloid beta precursor protein), a major player in Alzheimer’s disease that is known to have immune and inflammatory components. Functional analysis of the module genes revealed four gene clusters involved in innate and adaptive immunity, chemotaxis, cell-adhesion and transcription regulation, which are biologically meaningful processes that may underlie asthma risk. Our findings provide important clues for future research into asthma aetiology.
format Online
Article
Text
id pubmed-5430538
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-54305382017-05-15 Network-assisted analysis of GWAS data identifies a functionally-relevant gene module for childhood-onset asthma Liu, Y. Brossard, M. Sarnowski, C. Vaysse, A. Moffatt, M. Margaritte-Jeannin, P. Llinares-López, F. Dizier, M. H. Lathrop, M. Cookson, W. Bouzigon, E. Demenais, F. Sci Rep Article The number of genetic factors associated with asthma remains limited. To identify new genes with an undetected individual effect but collectively influencing asthma risk, we conducted a network-assisted analysis that integrates outcomes of genome-wide association studies (GWAS) and protein-protein interaction networks. We used two GWAS datasets, each consisting of the results of a meta-analysis of nine childhood-onset asthma GWASs (5,924 and 6,043 subjects, respectively). We developed a novel method to compute gene-level P-values (fastCGP), and proposed a parallel dense-module search and cross-selection strategy to identify an asthma-associated gene module. We identified a module of 91 genes with a significant joint effect on childhood-onset asthma (P < 10(−5)). This module contained a core subnetwork including genes at known asthma loci and five peripheral subnetworks including relevant candidates. Notably, the core genes were connected to APP (encoding amyloid beta precursor protein), a major player in Alzheimer’s disease that is known to have immune and inflammatory components. Functional analysis of the module genes revealed four gene clusters involved in innate and adaptive immunity, chemotaxis, cell-adhesion and transcription regulation, which are biologically meaningful processes that may underlie asthma risk. Our findings provide important clues for future research into asthma aetiology. Nature Publishing Group UK 2017-04-20 /pmc/articles/PMC5430538/ /pubmed/28428554 http://dx.doi.org/10.1038/s41598-017-01058-y Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Liu, Y.
Brossard, M.
Sarnowski, C.
Vaysse, A.
Moffatt, M.
Margaritte-Jeannin, P.
Llinares-López, F.
Dizier, M. H.
Lathrop, M.
Cookson, W.
Bouzigon, E.
Demenais, F.
Network-assisted analysis of GWAS data identifies a functionally-relevant gene module for childhood-onset asthma
title Network-assisted analysis of GWAS data identifies a functionally-relevant gene module for childhood-onset asthma
title_full Network-assisted analysis of GWAS data identifies a functionally-relevant gene module for childhood-onset asthma
title_fullStr Network-assisted analysis of GWAS data identifies a functionally-relevant gene module for childhood-onset asthma
title_full_unstemmed Network-assisted analysis of GWAS data identifies a functionally-relevant gene module for childhood-onset asthma
title_short Network-assisted analysis of GWAS data identifies a functionally-relevant gene module for childhood-onset asthma
title_sort network-assisted analysis of gwas data identifies a functionally-relevant gene module for childhood-onset asthma
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430538/
https://www.ncbi.nlm.nih.gov/pubmed/28428554
http://dx.doi.org/10.1038/s41598-017-01058-y
work_keys_str_mv AT liuy networkassistedanalysisofgwasdataidentifiesafunctionallyrelevantgenemoduleforchildhoodonsetasthma
AT brossardm networkassistedanalysisofgwasdataidentifiesafunctionallyrelevantgenemoduleforchildhoodonsetasthma
AT sarnowskic networkassistedanalysisofgwasdataidentifiesafunctionallyrelevantgenemoduleforchildhoodonsetasthma
AT vayssea networkassistedanalysisofgwasdataidentifiesafunctionallyrelevantgenemoduleforchildhoodonsetasthma
AT moffattm networkassistedanalysisofgwasdataidentifiesafunctionallyrelevantgenemoduleforchildhoodonsetasthma
AT margarittejeanninp networkassistedanalysisofgwasdataidentifiesafunctionallyrelevantgenemoduleforchildhoodonsetasthma
AT llinareslopezf networkassistedanalysisofgwasdataidentifiesafunctionallyrelevantgenemoduleforchildhoodonsetasthma
AT diziermh networkassistedanalysisofgwasdataidentifiesafunctionallyrelevantgenemoduleforchildhoodonsetasthma
AT lathropm networkassistedanalysisofgwasdataidentifiesafunctionallyrelevantgenemoduleforchildhoodonsetasthma
AT cooksonw networkassistedanalysisofgwasdataidentifiesafunctionallyrelevantgenemoduleforchildhoodonsetasthma
AT bouzigone networkassistedanalysisofgwasdataidentifiesafunctionallyrelevantgenemoduleforchildhoodonsetasthma
AT demenaisf networkassistedanalysisofgwasdataidentifiesafunctionallyrelevantgenemoduleforchildhoodonsetasthma