Cargando…

A novel indole compound MA-35 attenuates renal fibrosis by inhibiting both TNF-α and TGF-β(1) pathways

Renal fibrosis is closely related to chronic inflammation and is under the control of epigenetic regulations. Because the signaling of transforming growth factor-β(1) (TGF-β(1)) and tumor necrosis factor-α (TNF-α) play key roles in progression of renal fibrosis, dual blockade of TGF-β(1) and TNF-α i...

Descripción completa

Detalles Bibliográficos
Autores principales: Shima, Hisato, Sasaki, Kensuke, Suzuki, Takehiro, Mukawa, Chikahisa, Obara, Ten, Oba, Yuki, Matsuo, Akihiro, Kobayashi, Takayasu, Mishima, Eikan, Watanabe, Shun, Akiyama, Yasutoshi, Kikuchi, Koichi, Matsuhashi, Tetsuro, Oikawa, Yoshitsugu, Nanto, Fumika, Akiyama, Yukako, Ho, Hsin-Jung, Suzuki, Chitose, Saigusa, Daisuke, Masamune, Atsushi, Tomioka, Yoshihisa, Masaki, Takao, Ito, Sadayoshi, Hayashi, Ken-ichiro, Abe, Takaaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5432497/
https://www.ncbi.nlm.nih.gov/pubmed/28507324
http://dx.doi.org/10.1038/s41598-017-01702-7
_version_ 1783236638625759232
author Shima, Hisato
Sasaki, Kensuke
Suzuki, Takehiro
Mukawa, Chikahisa
Obara, Ten
Oba, Yuki
Matsuo, Akihiro
Kobayashi, Takayasu
Mishima, Eikan
Watanabe, Shun
Akiyama, Yasutoshi
Kikuchi, Koichi
Matsuhashi, Tetsuro
Oikawa, Yoshitsugu
Nanto, Fumika
Akiyama, Yukako
Ho, Hsin-Jung
Suzuki, Chitose
Saigusa, Daisuke
Masamune, Atsushi
Tomioka, Yoshihisa
Masaki, Takao
Ito, Sadayoshi
Hayashi, Ken-ichiro
Abe, Takaaki
author_facet Shima, Hisato
Sasaki, Kensuke
Suzuki, Takehiro
Mukawa, Chikahisa
Obara, Ten
Oba, Yuki
Matsuo, Akihiro
Kobayashi, Takayasu
Mishima, Eikan
Watanabe, Shun
Akiyama, Yasutoshi
Kikuchi, Koichi
Matsuhashi, Tetsuro
Oikawa, Yoshitsugu
Nanto, Fumika
Akiyama, Yukako
Ho, Hsin-Jung
Suzuki, Chitose
Saigusa, Daisuke
Masamune, Atsushi
Tomioka, Yoshihisa
Masaki, Takao
Ito, Sadayoshi
Hayashi, Ken-ichiro
Abe, Takaaki
author_sort Shima, Hisato
collection PubMed
description Renal fibrosis is closely related to chronic inflammation and is under the control of epigenetic regulations. Because the signaling of transforming growth factor-β(1) (TGF-β(1)) and tumor necrosis factor-α (TNF-α) play key roles in progression of renal fibrosis, dual blockade of TGF-β(1) and TNF-α is desired as its therapeutic approach. Here we screened small molecules showing anti-TNF-α activity in the compound library of indole derivatives. 11 out of 41 indole derivatives inhibited the TNF-α effect. Among them, Mitochonic Acid 35 (MA-35), 5-(3, 5-dimethoxybenzyloxy)-3-indoleacetic acid, showed the potent effect. The anti-TNF-α activity was mediated by inhibiting IκB kinase phosphorylation, which attenuated the LPS/GaIN-induced hepatic inflammation in the mice. Additionally, MA-35 concurrently showed an anti-TGF-β(1) effect by inhibiting Smad3 phosphorylation, resulting in the downregulation of TGF-β(1)-induced fibrotic gene expression. In unilateral ureter obstructed mouse kidney, which is a renal fibrosis model, MA-35 attenuated renal inflammation and fibrosis with the downregulation of inflammatory cytokines and fibrotic gene expressions. Furthermore, MA-35 inhibited TGF-β(1)-induced H3K4me1 histone modification of the fibrotic gene promoter, leading to a decrease in the fibrotic gene expression. MA-35 affects multiple signaling pathways involved in the fibrosis and may recover epigenetic modification; therefore, it could possibly be a novel therapeutic drug for fibrosis.
format Online
Article
Text
id pubmed-5432497
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-54324972017-05-16 A novel indole compound MA-35 attenuates renal fibrosis by inhibiting both TNF-α and TGF-β(1) pathways Shima, Hisato Sasaki, Kensuke Suzuki, Takehiro Mukawa, Chikahisa Obara, Ten Oba, Yuki Matsuo, Akihiro Kobayashi, Takayasu Mishima, Eikan Watanabe, Shun Akiyama, Yasutoshi Kikuchi, Koichi Matsuhashi, Tetsuro Oikawa, Yoshitsugu Nanto, Fumika Akiyama, Yukako Ho, Hsin-Jung Suzuki, Chitose Saigusa, Daisuke Masamune, Atsushi Tomioka, Yoshihisa Masaki, Takao Ito, Sadayoshi Hayashi, Ken-ichiro Abe, Takaaki Sci Rep Article Renal fibrosis is closely related to chronic inflammation and is under the control of epigenetic regulations. Because the signaling of transforming growth factor-β(1) (TGF-β(1)) and tumor necrosis factor-α (TNF-α) play key roles in progression of renal fibrosis, dual blockade of TGF-β(1) and TNF-α is desired as its therapeutic approach. Here we screened small molecules showing anti-TNF-α activity in the compound library of indole derivatives. 11 out of 41 indole derivatives inhibited the TNF-α effect. Among them, Mitochonic Acid 35 (MA-35), 5-(3, 5-dimethoxybenzyloxy)-3-indoleacetic acid, showed the potent effect. The anti-TNF-α activity was mediated by inhibiting IκB kinase phosphorylation, which attenuated the LPS/GaIN-induced hepatic inflammation in the mice. Additionally, MA-35 concurrently showed an anti-TGF-β(1) effect by inhibiting Smad3 phosphorylation, resulting in the downregulation of TGF-β(1)-induced fibrotic gene expression. In unilateral ureter obstructed mouse kidney, which is a renal fibrosis model, MA-35 attenuated renal inflammation and fibrosis with the downregulation of inflammatory cytokines and fibrotic gene expressions. Furthermore, MA-35 inhibited TGF-β(1)-induced H3K4me1 histone modification of the fibrotic gene promoter, leading to a decrease in the fibrotic gene expression. MA-35 affects multiple signaling pathways involved in the fibrosis and may recover epigenetic modification; therefore, it could possibly be a novel therapeutic drug for fibrosis. Nature Publishing Group UK 2017-05-15 /pmc/articles/PMC5432497/ /pubmed/28507324 http://dx.doi.org/10.1038/s41598-017-01702-7 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Shima, Hisato
Sasaki, Kensuke
Suzuki, Takehiro
Mukawa, Chikahisa
Obara, Ten
Oba, Yuki
Matsuo, Akihiro
Kobayashi, Takayasu
Mishima, Eikan
Watanabe, Shun
Akiyama, Yasutoshi
Kikuchi, Koichi
Matsuhashi, Tetsuro
Oikawa, Yoshitsugu
Nanto, Fumika
Akiyama, Yukako
Ho, Hsin-Jung
Suzuki, Chitose
Saigusa, Daisuke
Masamune, Atsushi
Tomioka, Yoshihisa
Masaki, Takao
Ito, Sadayoshi
Hayashi, Ken-ichiro
Abe, Takaaki
A novel indole compound MA-35 attenuates renal fibrosis by inhibiting both TNF-α and TGF-β(1) pathways
title A novel indole compound MA-35 attenuates renal fibrosis by inhibiting both TNF-α and TGF-β(1) pathways
title_full A novel indole compound MA-35 attenuates renal fibrosis by inhibiting both TNF-α and TGF-β(1) pathways
title_fullStr A novel indole compound MA-35 attenuates renal fibrosis by inhibiting both TNF-α and TGF-β(1) pathways
title_full_unstemmed A novel indole compound MA-35 attenuates renal fibrosis by inhibiting both TNF-α and TGF-β(1) pathways
title_short A novel indole compound MA-35 attenuates renal fibrosis by inhibiting both TNF-α and TGF-β(1) pathways
title_sort novel indole compound ma-35 attenuates renal fibrosis by inhibiting both tnf-α and tgf-β(1) pathways
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5432497/
https://www.ncbi.nlm.nih.gov/pubmed/28507324
http://dx.doi.org/10.1038/s41598-017-01702-7
work_keys_str_mv AT shimahisato anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT sasakikensuke anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT suzukitakehiro anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT mukawachikahisa anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT obaraten anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT obayuki anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT matsuoakihiro anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT kobayashitakayasu anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT mishimaeikan anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT watanabeshun anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT akiyamayasutoshi anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT kikuchikoichi anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT matsuhashitetsuro anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT oikawayoshitsugu anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT nantofumika anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT akiyamayukako anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT hohsinjung anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT suzukichitose anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT saigusadaisuke anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT masamuneatsushi anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT tomiokayoshihisa anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT masakitakao anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT itosadayoshi anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT hayashikenichiro anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT abetakaaki anovelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT shimahisato novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT sasakikensuke novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT suzukitakehiro novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT mukawachikahisa novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT obaraten novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT obayuki novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT matsuoakihiro novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT kobayashitakayasu novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT mishimaeikan novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT watanabeshun novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT akiyamayasutoshi novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT kikuchikoichi novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT matsuhashitetsuro novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT oikawayoshitsugu novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT nantofumika novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT akiyamayukako novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT hohsinjung novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT suzukichitose novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT saigusadaisuke novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT masamuneatsushi novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT tomiokayoshihisa novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT masakitakao novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT itosadayoshi novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT hayashikenichiro novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways
AT abetakaaki novelindolecompoundma35attenuatesrenalfibrosisbyinhibitingbothtnfaandtgfb1pathways