Cargando…
An imprinted non-coding genomic cluster at 14q32 defines clinically relevant molecular subtypes in osteosarcoma across multiple independent datasets
BACKGROUND: A microRNA (miRNA) collection on the imprinted 14q32 MEG3 region has been associated with outcome in osteosarcoma. We assessed the clinical utility of this miRNA set and their association with methylation status. METHODS: We integrated coding and non-coding RNA data from three independen...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5433149/ https://www.ncbi.nlm.nih.gov/pubmed/28506242 http://dx.doi.org/10.1186/s13045-017-0465-4 |
_version_ | 1783236791488217088 |
---|---|
author | Hill, Katherine E. Kelly, Andrew D. Kuijjer, Marieke L. Barry, William Rattani, Ahmed Garbutt, Cassandra C. Kissick, Haydn Janeway, Katherine Perez-Atayde, Antonio Goldsmith, Jeffrey Gebhardt, Mark C. Arredouani, Mohamed S. Cote, Greg Hornicek, Francis Choy, Edwin Duan, Zhenfeng Quackenbush, John Haibe-Kains, Benjamin Spentzos, Dimitrios |
author_facet | Hill, Katherine E. Kelly, Andrew D. Kuijjer, Marieke L. Barry, William Rattani, Ahmed Garbutt, Cassandra C. Kissick, Haydn Janeway, Katherine Perez-Atayde, Antonio Goldsmith, Jeffrey Gebhardt, Mark C. Arredouani, Mohamed S. Cote, Greg Hornicek, Francis Choy, Edwin Duan, Zhenfeng Quackenbush, John Haibe-Kains, Benjamin Spentzos, Dimitrios |
author_sort | Hill, Katherine E. |
collection | PubMed |
description | BACKGROUND: A microRNA (miRNA) collection on the imprinted 14q32 MEG3 region has been associated with outcome in osteosarcoma. We assessed the clinical utility of this miRNA set and their association with methylation status. METHODS: We integrated coding and non-coding RNA data from three independent annotated clinical osteosarcoma cohorts (n = 65, n = 27, and n = 25) and miRNA and methylation data from one in vitro (19 cell lines) and one clinical (NCI Therapeutically Applicable Research to Generate Effective Treatments (TARGET) osteosarcoma dataset, n = 80) dataset. We used time-dependent receiver operating characteristic (tdROC) analysis to evaluate the clinical value of candidate miRNA profiles and machine learning approaches to compare the coding and non-coding transcriptional programs of high- and low-risk osteosarcoma tumors and high- versus low-aggressiveness cell lines. In the cell line and TARGET datasets, we also studied the methylation patterns of the MEG3 imprinting control region on 14q32 and their association with miRNA expression and tumor aggressiveness. RESULTS: In the tdROC analysis, miRNA sets on 14q32 showed strong discriminatory power for recurrence and survival in the three clinical datasets. High- or low-risk tumor classification was robust to using different microRNA sets or classification methods. Machine learning approaches showed that genome-wide miRNA profiles and miRNA regulatory networks were quite different between the two outcome groups and mRNA profiles categorized the samples in a manner concordant with the miRNAs, suggesting potential molecular subtypes. Further, miRNA expression patterns were reproducible in comparing high-aggressiveness versus low-aggressiveness cell lines. Methylation patterns in the MEG3 differentially methylated region (DMR) also distinguished high-aggressiveness from low-aggressiveness cell lines and were associated with expression of several 14q32 miRNAs in both the cell lines and the large TARGET clinical dataset. Within the limits of available CpG array coverage, we observed a potential methylation-sensitive regulation of the non-coding RNA cluster by CTCF, a known enhancer-blocking factor. CONCLUSIONS: Loss of imprinting/methylation changes in the 14q32 non-coding region defines reproducible previously unrecognized osteosarcoma subtypes with distinct transcriptional programs and biologic and clinical behavior. Future studies will define the precise relationship between 14q32 imprinting, non-coding RNA expression, genomic enhancer binding, and tumor aggressiveness, with possible therapeutic implications for both early- and advanced-stage patients. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13045-017-0465-4) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5433149 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-54331492017-05-17 An imprinted non-coding genomic cluster at 14q32 defines clinically relevant molecular subtypes in osteosarcoma across multiple independent datasets Hill, Katherine E. Kelly, Andrew D. Kuijjer, Marieke L. Barry, William Rattani, Ahmed Garbutt, Cassandra C. Kissick, Haydn Janeway, Katherine Perez-Atayde, Antonio Goldsmith, Jeffrey Gebhardt, Mark C. Arredouani, Mohamed S. Cote, Greg Hornicek, Francis Choy, Edwin Duan, Zhenfeng Quackenbush, John Haibe-Kains, Benjamin Spentzos, Dimitrios J Hematol Oncol Research BACKGROUND: A microRNA (miRNA) collection on the imprinted 14q32 MEG3 region has been associated with outcome in osteosarcoma. We assessed the clinical utility of this miRNA set and their association with methylation status. METHODS: We integrated coding and non-coding RNA data from three independent annotated clinical osteosarcoma cohorts (n = 65, n = 27, and n = 25) and miRNA and methylation data from one in vitro (19 cell lines) and one clinical (NCI Therapeutically Applicable Research to Generate Effective Treatments (TARGET) osteosarcoma dataset, n = 80) dataset. We used time-dependent receiver operating characteristic (tdROC) analysis to evaluate the clinical value of candidate miRNA profiles and machine learning approaches to compare the coding and non-coding transcriptional programs of high- and low-risk osteosarcoma tumors and high- versus low-aggressiveness cell lines. In the cell line and TARGET datasets, we also studied the methylation patterns of the MEG3 imprinting control region on 14q32 and their association with miRNA expression and tumor aggressiveness. RESULTS: In the tdROC analysis, miRNA sets on 14q32 showed strong discriminatory power for recurrence and survival in the three clinical datasets. High- or low-risk tumor classification was robust to using different microRNA sets or classification methods. Machine learning approaches showed that genome-wide miRNA profiles and miRNA regulatory networks were quite different between the two outcome groups and mRNA profiles categorized the samples in a manner concordant with the miRNAs, suggesting potential molecular subtypes. Further, miRNA expression patterns were reproducible in comparing high-aggressiveness versus low-aggressiveness cell lines. Methylation patterns in the MEG3 differentially methylated region (DMR) also distinguished high-aggressiveness from low-aggressiveness cell lines and were associated with expression of several 14q32 miRNAs in both the cell lines and the large TARGET clinical dataset. Within the limits of available CpG array coverage, we observed a potential methylation-sensitive regulation of the non-coding RNA cluster by CTCF, a known enhancer-blocking factor. CONCLUSIONS: Loss of imprinting/methylation changes in the 14q32 non-coding region defines reproducible previously unrecognized osteosarcoma subtypes with distinct transcriptional programs and biologic and clinical behavior. Future studies will define the precise relationship between 14q32 imprinting, non-coding RNA expression, genomic enhancer binding, and tumor aggressiveness, with possible therapeutic implications for both early- and advanced-stage patients. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13045-017-0465-4) contains supplementary material, which is available to authorized users. BioMed Central 2017-05-15 /pmc/articles/PMC5433149/ /pubmed/28506242 http://dx.doi.org/10.1186/s13045-017-0465-4 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Hill, Katherine E. Kelly, Andrew D. Kuijjer, Marieke L. Barry, William Rattani, Ahmed Garbutt, Cassandra C. Kissick, Haydn Janeway, Katherine Perez-Atayde, Antonio Goldsmith, Jeffrey Gebhardt, Mark C. Arredouani, Mohamed S. Cote, Greg Hornicek, Francis Choy, Edwin Duan, Zhenfeng Quackenbush, John Haibe-Kains, Benjamin Spentzos, Dimitrios An imprinted non-coding genomic cluster at 14q32 defines clinically relevant molecular subtypes in osteosarcoma across multiple independent datasets |
title | An imprinted non-coding genomic cluster at 14q32 defines clinically relevant molecular subtypes in osteosarcoma across multiple independent datasets |
title_full | An imprinted non-coding genomic cluster at 14q32 defines clinically relevant molecular subtypes in osteosarcoma across multiple independent datasets |
title_fullStr | An imprinted non-coding genomic cluster at 14q32 defines clinically relevant molecular subtypes in osteosarcoma across multiple independent datasets |
title_full_unstemmed | An imprinted non-coding genomic cluster at 14q32 defines clinically relevant molecular subtypes in osteosarcoma across multiple independent datasets |
title_short | An imprinted non-coding genomic cluster at 14q32 defines clinically relevant molecular subtypes in osteosarcoma across multiple independent datasets |
title_sort | imprinted non-coding genomic cluster at 14q32 defines clinically relevant molecular subtypes in osteosarcoma across multiple independent datasets |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5433149/ https://www.ncbi.nlm.nih.gov/pubmed/28506242 http://dx.doi.org/10.1186/s13045-017-0465-4 |
work_keys_str_mv | AT hillkatherinee animprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT kellyandrewd animprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT kuijjermariekel animprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT barrywilliam animprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT rattaniahmed animprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT garbuttcassandrac animprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT kissickhaydn animprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT janewaykatherine animprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT perezataydeantonio animprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT goldsmithjeffrey animprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT gebhardtmarkc animprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT arredouanimohameds animprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT cotegreg animprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT hornicekfrancis animprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT choyedwin animprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT duanzhenfeng animprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT quackenbushjohn animprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT haibekainsbenjamin animprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT spentzosdimitrios animprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT hillkatherinee imprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT kellyandrewd imprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT kuijjermariekel imprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT barrywilliam imprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT rattaniahmed imprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT garbuttcassandrac imprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT kissickhaydn imprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT janewaykatherine imprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT perezataydeantonio imprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT goldsmithjeffrey imprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT gebhardtmarkc imprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT arredouanimohameds imprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT cotegreg imprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT hornicekfrancis imprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT choyedwin imprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT duanzhenfeng imprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT quackenbushjohn imprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT haibekainsbenjamin imprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets AT spentzosdimitrios imprintednoncodinggenomicclusterat14q32definesclinicallyrelevantmolecularsubtypesinosteosarcomaacrossmultipleindependentdatasets |