Cargando…
A new method for determining the optimal lagged ensemble
We propose a general methodology for determining the lagged ensemble that minimizes the mean square forecast error. The MSE of a lagged ensemble is shown to depend only on a quantity called the cross‐lead error covariance matrix, which can be estimated from a short hindcast data set and parameterize...
Autores principales: | Trenary, L., DelSole, T., Tippett, M. K., Pegion, K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5434667/ https://www.ncbi.nlm.nih.gov/pubmed/28580050 http://dx.doi.org/10.1002/2016MS000838 |
Ejemplares similares
-
Monthly ENSO Forecast Skill and Lagged Ensemble Size
por: Trenary, L., et al.
Publicado: (2018) -
The Weighted‐Average Lagged Ensemble
por: DelSole, T., et al.
Publicado: (2017) -
Assessing probabilistic predictions of ENSO phase and intensity from the North American Multimodel Ensemble
por: Tippett, Michael K., et al.
Publicado: (2017) -
A mutual information criterion with applications to canonical correlation analysis and graphical models
por: DelSole, Timothy, et al.
Publicado: (2021) -
Statistical methods for climate scientists /
por: DelSole, Timothy M.
Publicado: (2022)