Cargando…

The free energy of locking a ring: Changing a deoxyribonucleoside to a locked nucleic acid

Locked nucleic acid (LNA), a modified nucleoside which contains a bridging group across the ribose ring, improves the stability of DNA/RNA duplexes significantly, and therefore is of interest in biotechnology and gene therapy applications. In this study, we investigate the free energy change between...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, You, Villa, Alessandra, Nilsson, Lennart
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5434909/
https://www.ncbi.nlm.nih.gov/pubmed/28101966
http://dx.doi.org/10.1002/jcc.24692
Descripción
Sumario:Locked nucleic acid (LNA), a modified nucleoside which contains a bridging group across the ribose ring, improves the stability of DNA/RNA duplexes significantly, and therefore is of interest in biotechnology and gene therapy applications. In this study, we investigate the free energy change between LNA and DNA nucleosides. The transformation requires the breaking of the bridging group across the ribose ring, a problematic transformation in free energy calculations. To address this, we have developed a 3‐step (easy to implement) and a 1‐step protocol (more efficient, but more complicated to setup), for single and dual topologies in classical molecular dynamics simulations, using the Bennett Acceptance Ratio method to calculate the free energy. We validate the approach on the solvation free energy difference for the nucleosides thymidine, cytosine, and 5‐methyl‐cytosine. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.