Cargando…
Dissection of zebrafish shha function using site-specific targeting with a Cre-dependent genetic switch
Despite the extensive use of zebrafish as a model organism in developmental biology and regeneration research, genetic techniques enabling conditional analysis of gene function are limited. In this study, we generated Zwitch, a Cre-dependent invertible gene-trap cassette, enabling the establishment...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435461/ https://www.ncbi.nlm.nih.gov/pubmed/28513431 http://dx.doi.org/10.7554/eLife.24635 |
_version_ | 1783237231733899264 |
---|---|
author | Sugimoto, Kotaro Hui, Subhra P Sheng, Delicia Z Kikuchi, Kazu |
author_facet | Sugimoto, Kotaro Hui, Subhra P Sheng, Delicia Z Kikuchi, Kazu |
author_sort | Sugimoto, Kotaro |
collection | PubMed |
description | Despite the extensive use of zebrafish as a model organism in developmental biology and regeneration research, genetic techniques enabling conditional analysis of gene function are limited. In this study, we generated Zwitch, a Cre-dependent invertible gene-trap cassette, enabling the establishment of conditional alleles in zebrafish by generating intronic insertions via in vivo homologous recombination. To demonstrate the utility of Zwitch, we generated a conditional sonic hedgehog a (shha) allele. Homozygous shha mutants developed normally; however, shha mutant embryos globally expressing Cre exhibited strong reductions in endogenous shha and shha target gene mRNA levels and developmental defects associated with null shha mutations. Analyzing a conditional shha mutant generated using an epicardium-specific inducible Cre driver revealed unique roles for epicardium-derived Shha in myocardial proliferation during heart development and regeneration. Zwitch will extend the utility of zebrafish in organ development and regeneration research and might be applicable to other model organisms. DOI: http://dx.doi.org/10.7554/eLife.24635.001 |
format | Online Article Text |
id | pubmed-5435461 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-54354612017-05-18 Dissection of zebrafish shha function using site-specific targeting with a Cre-dependent genetic switch Sugimoto, Kotaro Hui, Subhra P Sheng, Delicia Z Kikuchi, Kazu eLife Developmental Biology and Stem Cells Despite the extensive use of zebrafish as a model organism in developmental biology and regeneration research, genetic techniques enabling conditional analysis of gene function are limited. In this study, we generated Zwitch, a Cre-dependent invertible gene-trap cassette, enabling the establishment of conditional alleles in zebrafish by generating intronic insertions via in vivo homologous recombination. To demonstrate the utility of Zwitch, we generated a conditional sonic hedgehog a (shha) allele. Homozygous shha mutants developed normally; however, shha mutant embryos globally expressing Cre exhibited strong reductions in endogenous shha and shha target gene mRNA levels and developmental defects associated with null shha mutations. Analyzing a conditional shha mutant generated using an epicardium-specific inducible Cre driver revealed unique roles for epicardium-derived Shha in myocardial proliferation during heart development and regeneration. Zwitch will extend the utility of zebrafish in organ development and regeneration research and might be applicable to other model organisms. DOI: http://dx.doi.org/10.7554/eLife.24635.001 eLife Sciences Publications, Ltd 2017-05-17 /pmc/articles/PMC5435461/ /pubmed/28513431 http://dx.doi.org/10.7554/eLife.24635 Text en © 2017, Sugimoto et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Developmental Biology and Stem Cells Sugimoto, Kotaro Hui, Subhra P Sheng, Delicia Z Kikuchi, Kazu Dissection of zebrafish shha function using site-specific targeting with a Cre-dependent genetic switch |
title | Dissection of zebrafish shha function using site-specific targeting with a Cre-dependent genetic switch |
title_full | Dissection of zebrafish shha function using site-specific targeting with a Cre-dependent genetic switch |
title_fullStr | Dissection of zebrafish shha function using site-specific targeting with a Cre-dependent genetic switch |
title_full_unstemmed | Dissection of zebrafish shha function using site-specific targeting with a Cre-dependent genetic switch |
title_short | Dissection of zebrafish shha function using site-specific targeting with a Cre-dependent genetic switch |
title_sort | dissection of zebrafish shha function using site-specific targeting with a cre-dependent genetic switch |
topic | Developmental Biology and Stem Cells |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435461/ https://www.ncbi.nlm.nih.gov/pubmed/28513431 http://dx.doi.org/10.7554/eLife.24635 |
work_keys_str_mv | AT sugimotokotaro dissectionofzebrafishshhafunctionusingsitespecifictargetingwithacredependentgeneticswitch AT huisubhrap dissectionofzebrafishshhafunctionusingsitespecifictargetingwithacredependentgeneticswitch AT shengdeliciaz dissectionofzebrafishshhafunctionusingsitespecifictargetingwithacredependentgeneticswitch AT kikuchikazu dissectionofzebrafishshhafunctionusingsitespecifictargetingwithacredependentgeneticswitch |