Cargando…

Azidothymidine inhibits cell growth and telomerase activity and induces DNA damage in human esophageal cancer

Esophageal cancer is one of the most common type of malignancies. Telomerase activity, which is absent or weakly detected in the majority of human somatic cells, is elevated in esophageal cancer. Although azidothymidine (AZT), a reverse transcriptase inhibitor, has been utilized as a treatment for t...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Haoli, Zhou, Jianwen, He, Qiong, Dong, Yu, Liu, Yanhui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436214/
https://www.ncbi.nlm.nih.gov/pubmed/28487971
http://dx.doi.org/10.3892/mmr.2017.6549
_version_ 1783237354581917696
author Wang, Haoli
Zhou, Jianwen
He, Qiong
Dong, Yu
Liu, Yanhui
author_facet Wang, Haoli
Zhou, Jianwen
He, Qiong
Dong, Yu
Liu, Yanhui
author_sort Wang, Haoli
collection PubMed
description Esophageal cancer is one of the most common type of malignancies. Telomerase activity, which is absent or weakly detected in the majority of human somatic cells, is elevated in esophageal cancer. Although azidothymidine (AZT), a reverse transcriptase inhibitor, has been utilized as a treatment for tumors, its role in treating esophageal cancer has not been confirmed. The aim of the present study was to determine the effect of AZT on telomerase activity and the proliferation of the human esophageal cancer cell line TE-11. A telomeric repeat amplification assay was utilized to detect telomerase activity following treatment of TE-11 cells with AZT. The effect of AZT on TE-11 cell cycle distribution was determined by flow cytometry. Cellular DNA damage was evaluated by a comet assay and an MTT assay demonstrated that AZT significantly inhibited the viability of TE-11 cells, in a time-and dose-dependent manner. In addition, TE-11 cells treated with various concentrations of AZT exhibited a significant reduction in telomerase activity and percentage of cells in the G1/G0 phase, and an increase in the percentage of cells in the S phase. High doses of AZT caused DNA damage, and enhanced the expression levels of γ-H2A histone family member X and phosphorylated checkpoint kinase 2 in TE-11 cells. These results demonstrated that AZT effectively inhibits proliferation of the TE-11 human esophageal cancer cell line in vitro. The growth inhibitory effects were associated with a reduction in telomerase activity, S and G2/M phase cell cycle arrest, and enhanced DNA damage, suggesting that AZT may be utilized in the clinic for the treatment of esophageal cancer.
format Online
Article
Text
id pubmed-5436214
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-54362142017-05-19 Azidothymidine inhibits cell growth and telomerase activity and induces DNA damage in human esophageal cancer Wang, Haoli Zhou, Jianwen He, Qiong Dong, Yu Liu, Yanhui Mol Med Rep Articles Esophageal cancer is one of the most common type of malignancies. Telomerase activity, which is absent or weakly detected in the majority of human somatic cells, is elevated in esophageal cancer. Although azidothymidine (AZT), a reverse transcriptase inhibitor, has been utilized as a treatment for tumors, its role in treating esophageal cancer has not been confirmed. The aim of the present study was to determine the effect of AZT on telomerase activity and the proliferation of the human esophageal cancer cell line TE-11. A telomeric repeat amplification assay was utilized to detect telomerase activity following treatment of TE-11 cells with AZT. The effect of AZT on TE-11 cell cycle distribution was determined by flow cytometry. Cellular DNA damage was evaluated by a comet assay and an MTT assay demonstrated that AZT significantly inhibited the viability of TE-11 cells, in a time-and dose-dependent manner. In addition, TE-11 cells treated with various concentrations of AZT exhibited a significant reduction in telomerase activity and percentage of cells in the G1/G0 phase, and an increase in the percentage of cells in the S phase. High doses of AZT caused DNA damage, and enhanced the expression levels of γ-H2A histone family member X and phosphorylated checkpoint kinase 2 in TE-11 cells. These results demonstrated that AZT effectively inhibits proliferation of the TE-11 human esophageal cancer cell line in vitro. The growth inhibitory effects were associated with a reduction in telomerase activity, S and G2/M phase cell cycle arrest, and enhanced DNA damage, suggesting that AZT may be utilized in the clinic for the treatment of esophageal cancer. D.A. Spandidos 2017-06 2017-05-03 /pmc/articles/PMC5436214/ /pubmed/28487971 http://dx.doi.org/10.3892/mmr.2017.6549 Text en Copyright: © Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Wang, Haoli
Zhou, Jianwen
He, Qiong
Dong, Yu
Liu, Yanhui
Azidothymidine inhibits cell growth and telomerase activity and induces DNA damage in human esophageal cancer
title Azidothymidine inhibits cell growth and telomerase activity and induces DNA damage in human esophageal cancer
title_full Azidothymidine inhibits cell growth and telomerase activity and induces DNA damage in human esophageal cancer
title_fullStr Azidothymidine inhibits cell growth and telomerase activity and induces DNA damage in human esophageal cancer
title_full_unstemmed Azidothymidine inhibits cell growth and telomerase activity and induces DNA damage in human esophageal cancer
title_short Azidothymidine inhibits cell growth and telomerase activity and induces DNA damage in human esophageal cancer
title_sort azidothymidine inhibits cell growth and telomerase activity and induces dna damage in human esophageal cancer
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436214/
https://www.ncbi.nlm.nih.gov/pubmed/28487971
http://dx.doi.org/10.3892/mmr.2017.6549
work_keys_str_mv AT wanghaoli azidothymidineinhibitscellgrowthandtelomeraseactivityandinducesdnadamageinhumanesophagealcancer
AT zhoujianwen azidothymidineinhibitscellgrowthandtelomeraseactivityandinducesdnadamageinhumanesophagealcancer
AT heqiong azidothymidineinhibitscellgrowthandtelomeraseactivityandinducesdnadamageinhumanesophagealcancer
AT dongyu azidothymidineinhibitscellgrowthandtelomeraseactivityandinducesdnadamageinhumanesophagealcancer
AT liuyanhui azidothymidineinhibitscellgrowthandtelomeraseactivityandinducesdnadamageinhumanesophagealcancer