Cargando…
Modeling of drying kiwi slices and its sensory evaluation
In this study, monolayer drying of kiwi slices was simulated by a laboratory‐scale hot‐air dryer. The drying process was carried out at three different temperatures of 50, 60, and 70°C. After the end of drying process, initially, the experimental drying data were fitted to the 11 well‐known drying m...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5448370/ https://www.ncbi.nlm.nih.gov/pubmed/28572931 http://dx.doi.org/10.1002/fsn3.414 |
_version_ | 1783239542903406592 |
---|---|
author | Mahjoorian, Abbas Mokhtarian, Mohsen Fayyaz, Nasrin Rahmati, Fatemeh Sayyadi, Shabnam Ariaii, Peiman |
author_facet | Mahjoorian, Abbas Mokhtarian, Mohsen Fayyaz, Nasrin Rahmati, Fatemeh Sayyadi, Shabnam Ariaii, Peiman |
author_sort | Mahjoorian, Abbas |
collection | PubMed |
description | In this study, monolayer drying of kiwi slices was simulated by a laboratory‐scale hot‐air dryer. The drying process was carried out at three different temperatures of 50, 60, and 70°C. After the end of drying process, initially, the experimental drying data were fitted to the 11 well‐known drying models. The results indicated that Two‐term model gave better performance compared with other models to monitor the moisture ratio (with average R (2) value equal .998). Also, this study used artificial neural network (ANN) in order to feasibly predict dried kiwi slices moisture ratio (y), based on the time and temperature drying inputs (x (1), x (2)). In order to do this research, two main activation functions called logsig and tanh, widely used in engineering calculations, were applied. The results revealed that, logsig activation function base on 13 neurons in first and second hidden layers were selected as the best configuration to predict the moisture ratio. This network was able to predict moisture ratio with R (2) value .997. Furthermore, kiwi slice favorite is evaluated by sensory evaluation. In this test, sense qualities as color, aroma, flavor, appearance, and chew ability (tissue brittleness) are considered. |
format | Online Article Text |
id | pubmed-5448370 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-54483702017-06-01 Modeling of drying kiwi slices and its sensory evaluation Mahjoorian, Abbas Mokhtarian, Mohsen Fayyaz, Nasrin Rahmati, Fatemeh Sayyadi, Shabnam Ariaii, Peiman Food Sci Nutr Original Research In this study, monolayer drying of kiwi slices was simulated by a laboratory‐scale hot‐air dryer. The drying process was carried out at three different temperatures of 50, 60, and 70°C. After the end of drying process, initially, the experimental drying data were fitted to the 11 well‐known drying models. The results indicated that Two‐term model gave better performance compared with other models to monitor the moisture ratio (with average R (2) value equal .998). Also, this study used artificial neural network (ANN) in order to feasibly predict dried kiwi slices moisture ratio (y), based on the time and temperature drying inputs (x (1), x (2)). In order to do this research, two main activation functions called logsig and tanh, widely used in engineering calculations, were applied. The results revealed that, logsig activation function base on 13 neurons in first and second hidden layers were selected as the best configuration to predict the moisture ratio. This network was able to predict moisture ratio with R (2) value .997. Furthermore, kiwi slice favorite is evaluated by sensory evaluation. In this test, sense qualities as color, aroma, flavor, appearance, and chew ability (tissue brittleness) are considered. John Wiley and Sons Inc. 2016-08-13 /pmc/articles/PMC5448370/ /pubmed/28572931 http://dx.doi.org/10.1002/fsn3.414 Text en © 2016 The Authors. Food Science & Nutrition published by Wiley Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Mahjoorian, Abbas Mokhtarian, Mohsen Fayyaz, Nasrin Rahmati, Fatemeh Sayyadi, Shabnam Ariaii, Peiman Modeling of drying kiwi slices and its sensory evaluation |
title | Modeling of drying kiwi slices and its sensory evaluation |
title_full | Modeling of drying kiwi slices and its sensory evaluation |
title_fullStr | Modeling of drying kiwi slices and its sensory evaluation |
title_full_unstemmed | Modeling of drying kiwi slices and its sensory evaluation |
title_short | Modeling of drying kiwi slices and its sensory evaluation |
title_sort | modeling of drying kiwi slices and its sensory evaluation |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5448370/ https://www.ncbi.nlm.nih.gov/pubmed/28572931 http://dx.doi.org/10.1002/fsn3.414 |
work_keys_str_mv | AT mahjoorianabbas modelingofdryingkiwislicesanditssensoryevaluation AT mokhtarianmohsen modelingofdryingkiwislicesanditssensoryevaluation AT fayyaznasrin modelingofdryingkiwislicesanditssensoryevaluation AT rahmatifatemeh modelingofdryingkiwislicesanditssensoryevaluation AT sayyadishabnam modelingofdryingkiwislicesanditssensoryevaluation AT ariaiipeiman modelingofdryingkiwislicesanditssensoryevaluation |