Cargando…
SKIP controls lysosome positioning using a composite kinesin-1 heavy and light chain-binding domain
The molecular interplay between cargo recognition and regulation of the activity of the kinesin-1 microtubule motor is not well understood. Using the lysosome adaptor SKIP (also known as PLEKHM2) as model cargo, we show that the kinesin heavy chains (KHCs), in addition to the kinesin light chains (K...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5450233/ https://www.ncbi.nlm.nih.gov/pubmed/28302907 http://dx.doi.org/10.1242/jcs.198267 |
_version_ | 1783239927860822016 |
---|---|
author | Sanger, Anneri Yip, Yan Y. Randall, Thomas S. Pernigo, Stefano Steiner, Roberto A. Dodding, Mark P. |
author_facet | Sanger, Anneri Yip, Yan Y. Randall, Thomas S. Pernigo, Stefano Steiner, Roberto A. Dodding, Mark P. |
author_sort | Sanger, Anneri |
collection | PubMed |
description | The molecular interplay between cargo recognition and regulation of the activity of the kinesin-1 microtubule motor is not well understood. Using the lysosome adaptor SKIP (also known as PLEKHM2) as model cargo, we show that the kinesin heavy chains (KHCs), in addition to the kinesin light chains (KLCs), can recognize tryptophan-acidic-binding determinants on the cargo when presented in the context of an extended KHC-interacting domain. Mutational separation of KHC and KLC binding shows that both interactions are important for SKIP–kinesin-1 interaction in vitro and that KHC binding is important for lysosome transport in vivo. However, in the absence of KLCs, SKIP can only bind to KHC when autoinhibition is relieved, suggesting that the KLCs gate access to the KHCs. We propose a model whereby tryptophan-acidic cargo is first recognized by KLCs, resulting in destabilization of KHC autoinhibition. This primary event then makes accessible a second SKIP-binding site on the KHC C-terminal tail that is adjacent to the autoinhibitory IAK region. Thus, cargo recognition and concurrent activation of kinesin-1 proceed in hierarchical stepwise fashion driven by a dynamic network of inter- and intra-molecular interactions. |
format | Online Article Text |
id | pubmed-5450233 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | The Company of Biologists Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-54502332017-06-13 SKIP controls lysosome positioning using a composite kinesin-1 heavy and light chain-binding domain Sanger, Anneri Yip, Yan Y. Randall, Thomas S. Pernigo, Stefano Steiner, Roberto A. Dodding, Mark P. J Cell Sci Research Article The molecular interplay between cargo recognition and regulation of the activity of the kinesin-1 microtubule motor is not well understood. Using the lysosome adaptor SKIP (also known as PLEKHM2) as model cargo, we show that the kinesin heavy chains (KHCs), in addition to the kinesin light chains (KLCs), can recognize tryptophan-acidic-binding determinants on the cargo when presented in the context of an extended KHC-interacting domain. Mutational separation of KHC and KLC binding shows that both interactions are important for SKIP–kinesin-1 interaction in vitro and that KHC binding is important for lysosome transport in vivo. However, in the absence of KLCs, SKIP can only bind to KHC when autoinhibition is relieved, suggesting that the KLCs gate access to the KHCs. We propose a model whereby tryptophan-acidic cargo is first recognized by KLCs, resulting in destabilization of KHC autoinhibition. This primary event then makes accessible a second SKIP-binding site on the KHC C-terminal tail that is adjacent to the autoinhibitory IAK region. Thus, cargo recognition and concurrent activation of kinesin-1 proceed in hierarchical stepwise fashion driven by a dynamic network of inter- and intra-molecular interactions. The Company of Biologists Ltd 2017-05-01 /pmc/articles/PMC5450233/ /pubmed/28302907 http://dx.doi.org/10.1242/jcs.198267 Text en © 2017. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/3.0This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Research Article Sanger, Anneri Yip, Yan Y. Randall, Thomas S. Pernigo, Stefano Steiner, Roberto A. Dodding, Mark P. SKIP controls lysosome positioning using a composite kinesin-1 heavy and light chain-binding domain |
title | SKIP controls lysosome positioning using a composite kinesin-1 heavy and light chain-binding domain |
title_full | SKIP controls lysosome positioning using a composite kinesin-1 heavy and light chain-binding domain |
title_fullStr | SKIP controls lysosome positioning using a composite kinesin-1 heavy and light chain-binding domain |
title_full_unstemmed | SKIP controls lysosome positioning using a composite kinesin-1 heavy and light chain-binding domain |
title_short | SKIP controls lysosome positioning using a composite kinesin-1 heavy and light chain-binding domain |
title_sort | skip controls lysosome positioning using a composite kinesin-1 heavy and light chain-binding domain |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5450233/ https://www.ncbi.nlm.nih.gov/pubmed/28302907 http://dx.doi.org/10.1242/jcs.198267 |
work_keys_str_mv | AT sangeranneri skipcontrolslysosomepositioningusingacompositekinesin1heavyandlightchainbindingdomain AT yipyany skipcontrolslysosomepositioningusingacompositekinesin1heavyandlightchainbindingdomain AT randallthomass skipcontrolslysosomepositioningusingacompositekinesin1heavyandlightchainbindingdomain AT pernigostefano skipcontrolslysosomepositioningusingacompositekinesin1heavyandlightchainbindingdomain AT steinerrobertoa skipcontrolslysosomepositioningusingacompositekinesin1heavyandlightchainbindingdomain AT doddingmarkp skipcontrolslysosomepositioningusingacompositekinesin1heavyandlightchainbindingdomain |