Cargando…
Processing of ingredients and diets and effects on nutritional value for pigs
A conventional diet based on corn and soybean meal fed to pigs is usually provided in a mash form and in most cases, processing other than grinding and mixing is not used. However, due to the high cost of energy in pig diets, use of high fiber ingredients such as soybean hulls, distillers dried grai...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5452379/ https://www.ncbi.nlm.nih.gov/pubmed/28572976 http://dx.doi.org/10.1186/s40104-017-0177-1 |
Sumario: | A conventional diet based on corn and soybean meal fed to pigs is usually provided in a mash form and in most cases, processing other than grinding and mixing is not used. However, due to the high cost of energy in pig diets, use of high fiber ingredients such as soybean hulls, distillers dried grains with solubles, and wheat middlings has increased. High fiber concentrations in the diet usually results in reduced energy and nutrient digestibility due to the low capacity of pigs to digest fiber, which negatively impacts growth performance and carcass composition of the pigs. Feed processing technologies such as changes in grinding procedures, expansion, extrusion, pelleting, use of enzymes or chemical treatments may, however, be used to solubilize some of the cellulose and hemicellulose fractions that form the cell wall of plants in the ingredients, and therefore, increase nutrient availability. This may have a positive effect on energy digestibility, and therefore, also on pig growth performance and carcass composition, but effects of different feed technologies on the nutritional value of feed ingredients and diets fed to pigs are not fully understood. It has however, been demonstrated that reduced particle size of cereal grains usually results in increased digestibility of energy, primarily due to increased digestibility of starch. Extrusion or expansion of ingredients or diets may also increase energy digestibility and it appears that the increase is greater in high fiber diets than in diets with lower concentrations of fiber. Chemical treatments have not consistently improved energy or nutrient digestibility, but a number of different enzymes may be used to increase the digestibility of phosphorus, calcium, or energy. Thus, there are several opportunities for using feed technology to improve the nutritional value of diets fed to pigs. |
---|