Cargando…
Myogenic differentiation of VCP disease-induced pluripotent stem cells: A novel platform for drug discovery
Valosin Containing Protein (VCP) disease is an autosomal dominant multisystem proteinopathy caused by mutations in the VCP gene, and is primarily associated with progressive muscle weakness, including atrophy of the pelvic and shoulder girdle muscles. Currently, no treatments are available and cardi...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456028/ https://www.ncbi.nlm.nih.gov/pubmed/28575052 http://dx.doi.org/10.1371/journal.pone.0176919 |
Sumario: | Valosin Containing Protein (VCP) disease is an autosomal dominant multisystem proteinopathy caused by mutations in the VCP gene, and is primarily associated with progressive muscle weakness, including atrophy of the pelvic and shoulder girdle muscles. Currently, no treatments are available and cardiac and respiratory failures can lead to mortality at an early age. VCP is an AAA ATPase multifunction complex protein and mutations in the VCP gene resulting in disrupted autophagic clearance. Due to the rarity of the disease, the myopathic nature of the disorder, ethical and practical considerations, VCP disease muscle biopsies are difficult to obtain. Thus, disease-specific human induced pluripotent stem cells (hiPSCs) now provide a valuable resource for the research owing to their renewable and pluripotent nature. In the present study, we report the differentiation and characterization of a VCP disease-specific hiPSCs into precursors expressing myogenic markers including desmin, myogenic factor 5 (MYF5), myosin and heavy chain 2 (MYH2). VCP disease phenotype is characterized by high expression of TAR DNA Binding Protein-43 (TDP-43), ubiquitin (Ub), Light Chain 3-I/II protein (LC3-I/II), and p62/SQSTM1 (p62) protein indicating disruption of the autophagy cascade. Treatment of hiPSC precursors with autophagy stimulators Rapamycin, Perifosine, or AT101 showed reduction in VCP pathology markers TDP-43, LC3-I/II and p62/SQSTM1. Conversely, autophagy inhibitors chloroquine had no beneficial effect, and Spautin-1 or MHY1485 had modest effects. Our results illustrate that hiPSC technology provide a useful platform for a rapid drug discovery and hence constitutes a bridge between clinical and bench research in VCP and related diseases. |
---|