Cargando…

Failure Analysis in Magnetic Tunnel Junction Nanopillar with Interfacial Perpendicular Magnetic Anisotropy

Magnetic tunnel junction nanopillar with interfacial perpendicular magnetic anisotropy (PMA-MTJ) becomes a promising candidate to build up spin transfer torque magnetic random access memory (STT-MRAM) for the next generation of non-volatile memory as it features low spin transfer switching current,...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Weisheng, Zhao, Xiaoxuan, Zhang, Boyu, Cao, Kaihua, Wang, Lezhi, Kang, Wang, Shi, Qian, Wang, Mengxing, Zhang, Yu, Wang, You, Peng, Shouzhong, Klein, Jacques-Olivier, de Barros Naviner, Lirida Alves, Ravelosona, Dafine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456535/
https://www.ncbi.nlm.nih.gov/pubmed/28787842
http://dx.doi.org/10.3390/ma9010041
_version_ 1783241291790811136
author Zhao, Weisheng
Zhao, Xiaoxuan
Zhang, Boyu
Cao, Kaihua
Wang, Lezhi
Kang, Wang
Shi, Qian
Wang, Mengxing
Zhang, Yu
Wang, You
Peng, Shouzhong
Klein, Jacques-Olivier
de Barros Naviner, Lirida Alves
Ravelosona, Dafine
author_facet Zhao, Weisheng
Zhao, Xiaoxuan
Zhang, Boyu
Cao, Kaihua
Wang, Lezhi
Kang, Wang
Shi, Qian
Wang, Mengxing
Zhang, Yu
Wang, You
Peng, Shouzhong
Klein, Jacques-Olivier
de Barros Naviner, Lirida Alves
Ravelosona, Dafine
author_sort Zhao, Weisheng
collection PubMed
description Magnetic tunnel junction nanopillar with interfacial perpendicular magnetic anisotropy (PMA-MTJ) becomes a promising candidate to build up spin transfer torque magnetic random access memory (STT-MRAM) for the next generation of non-volatile memory as it features low spin transfer switching current, fast speed, high scalability, and easy integration into conventional complementary metal oxide semiconductor (CMOS) circuits. However, this device suffers from a number of failure issues, such as large process variation and tunneling barrier breakdown. The large process variation is an intrinsic issue for PMA-MTJ as it is based on the interfacial effects between ultra-thin films with few layers of atoms; the tunneling barrier breakdown is due to the requirement of an ultra-thin tunneling barrier (e.g., <1 nm) to reduce the resistance area for the spin transfer torque switching in the nanopillar. These failure issues limit the research and development of STT-MRAM to widely achieve commercial products. In this paper, we give a full analysis of failure mechanisms for PMA-MTJ and present some eventual solutions from device fabrication to system level integration to optimize the failure issues.
format Online
Article
Text
id pubmed-5456535
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-54565352017-07-28 Failure Analysis in Magnetic Tunnel Junction Nanopillar with Interfacial Perpendicular Magnetic Anisotropy Zhao, Weisheng Zhao, Xiaoxuan Zhang, Boyu Cao, Kaihua Wang, Lezhi Kang, Wang Shi, Qian Wang, Mengxing Zhang, Yu Wang, You Peng, Shouzhong Klein, Jacques-Olivier de Barros Naviner, Lirida Alves Ravelosona, Dafine Materials (Basel) Review Magnetic tunnel junction nanopillar with interfacial perpendicular magnetic anisotropy (PMA-MTJ) becomes a promising candidate to build up spin transfer torque magnetic random access memory (STT-MRAM) for the next generation of non-volatile memory as it features low spin transfer switching current, fast speed, high scalability, and easy integration into conventional complementary metal oxide semiconductor (CMOS) circuits. However, this device suffers from a number of failure issues, such as large process variation and tunneling barrier breakdown. The large process variation is an intrinsic issue for PMA-MTJ as it is based on the interfacial effects between ultra-thin films with few layers of atoms; the tunneling barrier breakdown is due to the requirement of an ultra-thin tunneling barrier (e.g., <1 nm) to reduce the resistance area for the spin transfer torque switching in the nanopillar. These failure issues limit the research and development of STT-MRAM to widely achieve commercial products. In this paper, we give a full analysis of failure mechanisms for PMA-MTJ and present some eventual solutions from device fabrication to system level integration to optimize the failure issues. MDPI 2016-01-12 /pmc/articles/PMC5456535/ /pubmed/28787842 http://dx.doi.org/10.3390/ma9010041 Text en © 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license http://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Zhao, Weisheng
Zhao, Xiaoxuan
Zhang, Boyu
Cao, Kaihua
Wang, Lezhi
Kang, Wang
Shi, Qian
Wang, Mengxing
Zhang, Yu
Wang, You
Peng, Shouzhong
Klein, Jacques-Olivier
de Barros Naviner, Lirida Alves
Ravelosona, Dafine
Failure Analysis in Magnetic Tunnel Junction Nanopillar with Interfacial Perpendicular Magnetic Anisotropy
title Failure Analysis in Magnetic Tunnel Junction Nanopillar with Interfacial Perpendicular Magnetic Anisotropy
title_full Failure Analysis in Magnetic Tunnel Junction Nanopillar with Interfacial Perpendicular Magnetic Anisotropy
title_fullStr Failure Analysis in Magnetic Tunnel Junction Nanopillar with Interfacial Perpendicular Magnetic Anisotropy
title_full_unstemmed Failure Analysis in Magnetic Tunnel Junction Nanopillar with Interfacial Perpendicular Magnetic Anisotropy
title_short Failure Analysis in Magnetic Tunnel Junction Nanopillar with Interfacial Perpendicular Magnetic Anisotropy
title_sort failure analysis in magnetic tunnel junction nanopillar with interfacial perpendicular magnetic anisotropy
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456535/
https://www.ncbi.nlm.nih.gov/pubmed/28787842
http://dx.doi.org/10.3390/ma9010041
work_keys_str_mv AT zhaoweisheng failureanalysisinmagnetictunneljunctionnanopillarwithinterfacialperpendicularmagneticanisotropy
AT zhaoxiaoxuan failureanalysisinmagnetictunneljunctionnanopillarwithinterfacialperpendicularmagneticanisotropy
AT zhangboyu failureanalysisinmagnetictunneljunctionnanopillarwithinterfacialperpendicularmagneticanisotropy
AT caokaihua failureanalysisinmagnetictunneljunctionnanopillarwithinterfacialperpendicularmagneticanisotropy
AT wanglezhi failureanalysisinmagnetictunneljunctionnanopillarwithinterfacialperpendicularmagneticanisotropy
AT kangwang failureanalysisinmagnetictunneljunctionnanopillarwithinterfacialperpendicularmagneticanisotropy
AT shiqian failureanalysisinmagnetictunneljunctionnanopillarwithinterfacialperpendicularmagneticanisotropy
AT wangmengxing failureanalysisinmagnetictunneljunctionnanopillarwithinterfacialperpendicularmagneticanisotropy
AT zhangyu failureanalysisinmagnetictunneljunctionnanopillarwithinterfacialperpendicularmagneticanisotropy
AT wangyou failureanalysisinmagnetictunneljunctionnanopillarwithinterfacialperpendicularmagneticanisotropy
AT pengshouzhong failureanalysisinmagnetictunneljunctionnanopillarwithinterfacialperpendicularmagneticanisotropy
AT kleinjacquesolivier failureanalysisinmagnetictunneljunctionnanopillarwithinterfacialperpendicularmagneticanisotropy
AT debarrosnavinerliridaalves failureanalysisinmagnetictunneljunctionnanopillarwithinterfacialperpendicularmagneticanisotropy
AT ravelosonadafine failureanalysisinmagnetictunneljunctionnanopillarwithinterfacialperpendicularmagneticanisotropy