Cargando…
Niclosamide is a potential therapeutic for familial adenomatosis polyposis by disrupting Axin-GSK3 interaction
The epithelial-mesenchymal transition (EMT) is implicated in tumorigenesis and cancer progression, and canonical Wnt signaling tightly controls Snail, a key transcriptional repressor of EMT. While the suppression of canonical Wnt signaling and EMT comprises an attractive therapeutic strategy, molecu...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458252/ https://www.ncbi.nlm.nih.gov/pubmed/28418862 http://dx.doi.org/10.18632/oncotarget.16252 |
Sumario: | The epithelial-mesenchymal transition (EMT) is implicated in tumorigenesis and cancer progression, and canonical Wnt signaling tightly controls Snail, a key transcriptional repressor of EMT. While the suppression of canonical Wnt signaling and EMT comprises an attractive therapeutic strategy, molecular targets for small molecules reverting Wnt and EMT have not been widely studied. Meanwhile, the anti-helminthic niclosamide has been identified as a potent inhibitor of many oncogenic signaling pathways although its molecular targets have not yet been clearly identified. In this study, we show that niclosamide directly targets Axin-GSK3 interaction, at least in part, resulting in suppression of Wnt/Snail-mediated EMT. In vitro and in vivo, disruption of Axin-GSK3 complex by niclosamide induces mesenchymal to epithelial reversion at nM concentrations, accompanied with suppression of the tumorigenic potential of colon cancer. Niclosamide treatment successfully attenuates Snail abundance while increasing E-cadherin abundance in xenograft tumor. Notably, oral administration of niclosamide significantly suppressed adenoma formation in an APC-MIN mice model, indicating that niclosamide is an effective therapeutic for familial adenomatosis polyposis (FAP) patients. In this study, we identified a novel target to control the canonical Wnt pathway and Snail-mediated EMT program, and discovered a repositioned therapeutics for FAP patients. |
---|