Cargando…

Boron Partitioning Coefficient above Unity in Laser Crystallized Silicon

Boron pile-up at the maximum melt depth for laser melt annealing of implanted silicon has been reported in numerous papers. The present contribution examines the boron accumulation in a laser doping setting, without dopants initially incorporated in the silicon wafer. Our numerical simulation models...

Descripción completa

Detalles Bibliográficos
Autores principales: Lill, Patrick C., Dahlinger, Morris, Köhler, Jürgen R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5459181/
https://www.ncbi.nlm.nih.gov/pubmed/28772548
http://dx.doi.org/10.3390/ma10020189
Descripción
Sumario:Boron pile-up at the maximum melt depth for laser melt annealing of implanted silicon has been reported in numerous papers. The present contribution examines the boron accumulation in a laser doping setting, without dopants initially incorporated in the silicon wafer. Our numerical simulation models laser-induced melting as well as dopant diffusion, and excellently reproduces the secondary ion mass spectroscopy-measured boron profiles. We determine a partitioning coefficient [Formula: see text] above unity with [Formula: see text] and thermally-activated diffusivity [Formula: see text] , with a value [Formula: see text] cm [Formula: see text] ·s [Formula: see text] of boron in liquid silicon. For similar laser parameters and process conditions, our model predicts the anticipated boron profile of a laser doping experiment.