Cargando…
Preparing local strain patterns in graphene by atomic force microscope based indentation
Patterning graphene into various mesoscopic devices such as nanoribbons, quantum dots, etc. by lithographic techniques has enabled the guiding and manipulation of graphene’s Dirac-type charge carriers. Graphene, with well-defined strain patterns, holds promise of similarly rich physics while avoidin...
Autores principales: | Nemes-Incze, Péter, Kukucska, Gergő, Koltai, János, Kürti, Jenő, Hwang, Chanyong, Tapasztó, Levente, Biró, László P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465061/ https://www.ncbi.nlm.nih.gov/pubmed/28596579 http://dx.doi.org/10.1038/s41598-017-03332-5 |
Ejemplares similares
-
Signature of
Large-Gap Quantum Spin Hall State in
the Layered Mineral Jacutingaite
por: Kandrai, Konrád, et al.
Publicado: (2020) -
Exfoliation of large-area transition metal chalcogenide single layers
por: Magda, Gábor Zsolt, et al.
Publicado: (2015) -
Quantifying Hydrostatic Pressure in Plant Cells by Using Indentation with an Atomic Force Microscope
por: Beauzamy, Léna, et al.
Publicado: (2015) -
The intrinsic defect structure of exfoliated MoS(2) single layers revealed by Scanning Tunneling Microscopy
por: Vancsó, Péter, et al.
Publicado: (2016) -
Finite Element Modelling of Single Cell Based on Atomic Force Microscope Indentation Method
por: Wang, Lili, et al.
Publicado: (2019)