Cargando…
Overexpression and Knockdown of Hypoxia-Inducible Factor 1 Disrupt the Expression of Steroidogenic Enzyme Genes and Early Embryonic Development in Zebrafish
Hypoxia is an important environmental stressor leading to endocrine disruption and reproductive impairment in fish. Although the hypoxia-inducible factor 1 (HIF-1) is known to regulate the transcription of various genes mediating oxygen homeostasis, its role in modulating steroidogenesis-related gen...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467919/ https://www.ncbi.nlm.nih.gov/pubmed/28634424 http://dx.doi.org/10.1177/1177625017713193 |
_version_ | 1783243342329413632 |
---|---|
author | Tan, Tianfeng Yu, Richard Man Kit Wu, Rudolf Shiu Sun Kong, Richard Yuen Chong |
author_facet | Tan, Tianfeng Yu, Richard Man Kit Wu, Rudolf Shiu Sun Kong, Richard Yuen Chong |
author_sort | Tan, Tianfeng |
collection | PubMed |
description | Hypoxia is an important environmental stressor leading to endocrine disruption and reproductive impairment in fish. Although the hypoxia-inducible factor 1 (HIF-1) is known to regulate the transcription of various genes mediating oxygen homeostasis, its role in modulating steroidogenesis-related gene expression remains poorly understood. In this study, the regulatory effect of HIF-1 on the expression of 9 steroidogenic enzyme genes was investigated in zebrafish embryos using a “gain-of-function and loss-of-function” approach. Eight of the genes, CYP11a, CYP11b2, 3β-HSD, HMGCR, CYP17a1, 17β-HSD2, CYP19a, and CYP19b, were found to be differentially upregulated at 24 and 48 hpf following zHIF-1α-ΔODD overexpression (a mutant zebrafish HIF-1α protein with proline-414 and proline-557 deleted). Knockdown of zHIF-1α also affected the expression pattern of the steroidogenic enzyme genes. Overexpression of zHIF-1α and hypoxia exposure resulted in downregulated StAR expression but upregulated CYP11a and 3β-HSD expression in zebrafish embryos. Conversely, the expression patterns of these 3 genes were reversed in embryos in which zHIF-1α was knocked down under normoxia, suggesting that these 3 genes are regulated by HIF-1. Overall, the findings from this study indicate that HIF-1–mediated mechanisms are likely involved in the regulation of specific steroidogenic genes. |
format | Online Article Text |
id | pubmed-5467919 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-54679192017-06-20 Overexpression and Knockdown of Hypoxia-Inducible Factor 1 Disrupt the Expression of Steroidogenic Enzyme Genes and Early Embryonic Development in Zebrafish Tan, Tianfeng Yu, Richard Man Kit Wu, Rudolf Shiu Sun Kong, Richard Yuen Chong Gene Regul Syst Bio Original Research Hypoxia is an important environmental stressor leading to endocrine disruption and reproductive impairment in fish. Although the hypoxia-inducible factor 1 (HIF-1) is known to regulate the transcription of various genes mediating oxygen homeostasis, its role in modulating steroidogenesis-related gene expression remains poorly understood. In this study, the regulatory effect of HIF-1 on the expression of 9 steroidogenic enzyme genes was investigated in zebrafish embryos using a “gain-of-function and loss-of-function” approach. Eight of the genes, CYP11a, CYP11b2, 3β-HSD, HMGCR, CYP17a1, 17β-HSD2, CYP19a, and CYP19b, were found to be differentially upregulated at 24 and 48 hpf following zHIF-1α-ΔODD overexpression (a mutant zebrafish HIF-1α protein with proline-414 and proline-557 deleted). Knockdown of zHIF-1α also affected the expression pattern of the steroidogenic enzyme genes. Overexpression of zHIF-1α and hypoxia exposure resulted in downregulated StAR expression but upregulated CYP11a and 3β-HSD expression in zebrafish embryos. Conversely, the expression patterns of these 3 genes were reversed in embryos in which zHIF-1α was knocked down under normoxia, suggesting that these 3 genes are regulated by HIF-1. Overall, the findings from this study indicate that HIF-1–mediated mechanisms are likely involved in the regulation of specific steroidogenic genes. SAGE Publications 2017-06-08 /pmc/articles/PMC5467919/ /pubmed/28634424 http://dx.doi.org/10.1177/1177625017713193 Text en © The Author(s) 2017 This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page(https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Original Research Tan, Tianfeng Yu, Richard Man Kit Wu, Rudolf Shiu Sun Kong, Richard Yuen Chong Overexpression and Knockdown of Hypoxia-Inducible Factor 1 Disrupt the Expression of Steroidogenic Enzyme Genes and Early Embryonic Development in Zebrafish |
title | Overexpression and Knockdown of Hypoxia-Inducible Factor 1 Disrupt the Expression of Steroidogenic Enzyme Genes and Early Embryonic Development in Zebrafish |
title_full | Overexpression and Knockdown of Hypoxia-Inducible Factor 1 Disrupt the Expression of Steroidogenic Enzyme Genes and Early Embryonic Development in Zebrafish |
title_fullStr | Overexpression and Knockdown of Hypoxia-Inducible Factor 1 Disrupt the Expression of Steroidogenic Enzyme Genes and Early Embryonic Development in Zebrafish |
title_full_unstemmed | Overexpression and Knockdown of Hypoxia-Inducible Factor 1 Disrupt the Expression of Steroidogenic Enzyme Genes and Early Embryonic Development in Zebrafish |
title_short | Overexpression and Knockdown of Hypoxia-Inducible Factor 1 Disrupt the Expression of Steroidogenic Enzyme Genes and Early Embryonic Development in Zebrafish |
title_sort | overexpression and knockdown of hypoxia-inducible factor 1 disrupt the expression of steroidogenic enzyme genes and early embryonic development in zebrafish |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467919/ https://www.ncbi.nlm.nih.gov/pubmed/28634424 http://dx.doi.org/10.1177/1177625017713193 |
work_keys_str_mv | AT tantianfeng overexpressionandknockdownofhypoxiainduciblefactor1disrupttheexpressionofsteroidogenicenzymegenesandearlyembryonicdevelopmentinzebrafish AT yurichardmankit overexpressionandknockdownofhypoxiainduciblefactor1disrupttheexpressionofsteroidogenicenzymegenesandearlyembryonicdevelopmentinzebrafish AT wurudolfshiusun overexpressionandknockdownofhypoxiainduciblefactor1disrupttheexpressionofsteroidogenicenzymegenesandearlyembryonicdevelopmentinzebrafish AT kongrichardyuenchong overexpressionandknockdownofhypoxiainduciblefactor1disrupttheexpressionofsteroidogenicenzymegenesandearlyembryonicdevelopmentinzebrafish |