Cargando…
Spectroscopic Diagnosis of Arsenic Contamination in Agricultural Soils
This study investigated the abilities of pre-processing, feature selection and machine-learning methods for the spectroscopic diagnosis of soil arsenic contamination. The spectral data were pre-processed by using Savitzky-Golay smoothing, first and second derivatives, multiplicative scatter correcti...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5469641/ https://www.ncbi.nlm.nih.gov/pubmed/28471412 http://dx.doi.org/10.3390/s17051036 |