Cargando…
Activation of Lineage Regulators and Transposable Elements across a Pluripotent Spectrum
Embryonic stem cells (ESCs) are characterized by the pluripotent capacity to generate all embryonic lineages. Here, we show that ESCs can occupy a spectrum of distinct transcriptional and epigenetic states in response to varied extrinsic conditions. This spectrum broadly corresponds to a development...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5470235/ https://www.ncbi.nlm.nih.gov/pubmed/28591649 http://dx.doi.org/10.1016/j.stemcr.2017.05.014 |
_version_ | 1783243738518126592 |
---|---|
author | Hackett, Jamie A. Kobayashi, Toshihiro Dietmann, Sabine Surani, M. Azim |
author_facet | Hackett, Jamie A. Kobayashi, Toshihiro Dietmann, Sabine Surani, M. Azim |
author_sort | Hackett, Jamie A. |
collection | PubMed |
description | Embryonic stem cells (ESCs) are characterized by the pluripotent capacity to generate all embryonic lineages. Here, we show that ESCs can occupy a spectrum of distinct transcriptional and epigenetic states in response to varied extrinsic conditions. This spectrum broadly corresponds to a developmental continuum of pluripotency and is coupled with a gradient of increasing global DNA methylation. Each pluripotent state is linked with activation of distinct classes of transposable elements (TEs), which in turn influence ESCs through generating chimeric transcripts. Moreover, varied ESC culture parameters differentially license heterogeneous activation of master lineage regulators, including Sox1, Gata4, or Blimp1, and influence differentiation. Activation of Blimp1 is prevalent in 2i (without LIF) conditions, and marks a dynamic primordial germ cell (PGC)-like sub-state that is directly repressed by Klf4 downstream of LIF/STAT3 signaling. Thus, extrinsic cues establish a spectrum of pluripotent states, in part by modulating sub-populations, as well as directing the transcriptome, epigenome, and TE. |
format | Online Article Text |
id | pubmed-5470235 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-54702352017-06-23 Activation of Lineage Regulators and Transposable Elements across a Pluripotent Spectrum Hackett, Jamie A. Kobayashi, Toshihiro Dietmann, Sabine Surani, M. Azim Stem Cell Reports Article Embryonic stem cells (ESCs) are characterized by the pluripotent capacity to generate all embryonic lineages. Here, we show that ESCs can occupy a spectrum of distinct transcriptional and epigenetic states in response to varied extrinsic conditions. This spectrum broadly corresponds to a developmental continuum of pluripotency and is coupled with a gradient of increasing global DNA methylation. Each pluripotent state is linked with activation of distinct classes of transposable elements (TEs), which in turn influence ESCs through generating chimeric transcripts. Moreover, varied ESC culture parameters differentially license heterogeneous activation of master lineage regulators, including Sox1, Gata4, or Blimp1, and influence differentiation. Activation of Blimp1 is prevalent in 2i (without LIF) conditions, and marks a dynamic primordial germ cell (PGC)-like sub-state that is directly repressed by Klf4 downstream of LIF/STAT3 signaling. Thus, extrinsic cues establish a spectrum of pluripotent states, in part by modulating sub-populations, as well as directing the transcriptome, epigenome, and TE. Elsevier 2017-06-09 /pmc/articles/PMC5470235/ /pubmed/28591649 http://dx.doi.org/10.1016/j.stemcr.2017.05.014 Text en © 2017 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hackett, Jamie A. Kobayashi, Toshihiro Dietmann, Sabine Surani, M. Azim Activation of Lineage Regulators and Transposable Elements across a Pluripotent Spectrum |
title | Activation of Lineage Regulators and Transposable Elements across a Pluripotent Spectrum |
title_full | Activation of Lineage Regulators and Transposable Elements across a Pluripotent Spectrum |
title_fullStr | Activation of Lineage Regulators and Transposable Elements across a Pluripotent Spectrum |
title_full_unstemmed | Activation of Lineage Regulators and Transposable Elements across a Pluripotent Spectrum |
title_short | Activation of Lineage Regulators and Transposable Elements across a Pluripotent Spectrum |
title_sort | activation of lineage regulators and transposable elements across a pluripotent spectrum |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5470235/ https://www.ncbi.nlm.nih.gov/pubmed/28591649 http://dx.doi.org/10.1016/j.stemcr.2017.05.014 |
work_keys_str_mv | AT hackettjamiea activationoflineageregulatorsandtransposableelementsacrossapluripotentspectrum AT kobayashitoshihiro activationoflineageregulatorsandtransposableelementsacrossapluripotentspectrum AT dietmannsabine activationoflineageregulatorsandtransposableelementsacrossapluripotentspectrum AT suranimazim activationoflineageregulatorsandtransposableelementsacrossapluripotentspectrum |