Cargando…
SCnorm: robust normalization of single-cell RNA-seq data
Normalization of RNA-sequencing data is essential for accurate downstream inference, but the assumptions upon which most methods are based do not hold in the single-cell setting. Consequently, applying existing normalization methods to single-cell RNA-seq data introduces artifacts that bias downstre...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473255/ https://www.ncbi.nlm.nih.gov/pubmed/28418000 http://dx.doi.org/10.1038/nmeth.4263 |
_version_ | 1783244261316100096 |
---|---|
author | Bacher, Rhonda Chu, Li-Fang Leng, Ning Gasch, Audrey P. Thomson, James A. Stewart, Ron M. Newton, Michael Kendziorski, Christina |
author_facet | Bacher, Rhonda Chu, Li-Fang Leng, Ning Gasch, Audrey P. Thomson, James A. Stewart, Ron M. Newton, Michael Kendziorski, Christina |
author_sort | Bacher, Rhonda |
collection | PubMed |
description | Normalization of RNA-sequencing data is essential for accurate downstream inference, but the assumptions upon which most methods are based do not hold in the single-cell setting. Consequently, applying existing normalization methods to single-cell RNA-seq data introduces artifacts that bias downstream analyses. To address this, we introduce SCnorm for accurate and efficient normalization of scRNA-seq data. |
format | Online Article Text |
id | pubmed-5473255 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
record_format | MEDLINE/PubMed |
spelling | pubmed-54732552017-10-17 SCnorm: robust normalization of single-cell RNA-seq data Bacher, Rhonda Chu, Li-Fang Leng, Ning Gasch, Audrey P. Thomson, James A. Stewart, Ron M. Newton, Michael Kendziorski, Christina Nat Methods Article Normalization of RNA-sequencing data is essential for accurate downstream inference, but the assumptions upon which most methods are based do not hold in the single-cell setting. Consequently, applying existing normalization methods to single-cell RNA-seq data introduces artifacts that bias downstream analyses. To address this, we introduce SCnorm for accurate and efficient normalization of scRNA-seq data. 2017-04-17 2017-06 /pmc/articles/PMC5473255/ /pubmed/28418000 http://dx.doi.org/10.1038/nmeth.4263 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Bacher, Rhonda Chu, Li-Fang Leng, Ning Gasch, Audrey P. Thomson, James A. Stewart, Ron M. Newton, Michael Kendziorski, Christina SCnorm: robust normalization of single-cell RNA-seq data |
title | SCnorm: robust normalization of single-cell RNA-seq data |
title_full | SCnorm: robust normalization of single-cell RNA-seq data |
title_fullStr | SCnorm: robust normalization of single-cell RNA-seq data |
title_full_unstemmed | SCnorm: robust normalization of single-cell RNA-seq data |
title_short | SCnorm: robust normalization of single-cell RNA-seq data |
title_sort | scnorm: robust normalization of single-cell rna-seq data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473255/ https://www.ncbi.nlm.nih.gov/pubmed/28418000 http://dx.doi.org/10.1038/nmeth.4263 |
work_keys_str_mv | AT bacherrhonda scnormrobustnormalizationofsinglecellrnaseqdata AT chulifang scnormrobustnormalizationofsinglecellrnaseqdata AT lengning scnormrobustnormalizationofsinglecellrnaseqdata AT gaschaudreyp scnormrobustnormalizationofsinglecellrnaseqdata AT thomsonjamesa scnormrobustnormalizationofsinglecellrnaseqdata AT stewartronm scnormrobustnormalizationofsinglecellrnaseqdata AT newtonmichael scnormrobustnormalizationofsinglecellrnaseqdata AT kendziorskichristina scnormrobustnormalizationofsinglecellrnaseqdata |