Cargando…
Experimental and computational study of alkane dehydrogenation catalyzed by a carbazolide-based rhodium PNP pincer complex
A rhodium complex based on the bis-phosphine carbazolide pincer ligand was investigated in the context of alkane dehydrogenation and in comparison with its iridium analogue. (carb-PNP)RhH(2) was found to catalyze cyclooctane/t-butylethylene (COA/TBE) transfer dehydrogenation with a turnover frequenc...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5477040/ https://www.ncbi.nlm.nih.gov/pubmed/28660029 http://dx.doi.org/10.1039/c5sc04794c |
_version_ | 1783244711294664704 |
---|---|
author | Bézier, David Guan, Changjian Krogh-Jespersen, Karsten Goldman, Alan S. Brookhart, Maurice |
author_facet | Bézier, David Guan, Changjian Krogh-Jespersen, Karsten Goldman, Alan S. Brookhart, Maurice |
author_sort | Bézier, David |
collection | PubMed |
description | A rhodium complex based on the bis-phosphine carbazolide pincer ligand was investigated in the context of alkane dehydrogenation and in comparison with its iridium analogue. (carb-PNP)RhH(2) was found to catalyze cyclooctane/t-butylethylene (COA/TBE) transfer dehydrogenation with a turnover frequency up to 10 min(–1) and turnover numbers up to 340, in marked contrast with the inactive Ir analogue. TONs were limited by catalyst decomposition. Through a combination of mechanistic, experimental and computational (DFT) studies the difference between the Rh and Ir analogues was found to be attributable to the much greater accessibility of the 14-electron (carb-PNP)M(i) fragment in the case of Rh. In contrast, Ir is more strongly biased toward the M(iii) oxidation state. Thus (carb-PNP)RhH(2) but not (carb-PNP)IrH(2) can be dehydrogenated by sacrificial hydrogen acceptors, particularly TBE. The rate-limiting segment of the (carb-PNP)Rh-catalyzed COA/TBE transfer dehydrogenation cycle is found to be the dehydrogenation of COA. Within this segment, the rate-determining step is calculated to be (carb-PNP)Rh(cyclooctyl)(H) undergoing formation of a β-H agostic intermediate, while the reverse step (loss of a β-H agostic interaction) is rate-limiting for hydrogenation of the acceptors TBE and ethylene. Such a step has not previously been proposed as rate-limiting in the context of alkane dehydrogenation, nor, to our knowledge, has the reverse step been proposed as rate-limiting for olefin hydrogenation. |
format | Online Article Text |
id | pubmed-5477040 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-54770402017-06-28 Experimental and computational study of alkane dehydrogenation catalyzed by a carbazolide-based rhodium PNP pincer complex Bézier, David Guan, Changjian Krogh-Jespersen, Karsten Goldman, Alan S. Brookhart, Maurice Chem Sci Chemistry A rhodium complex based on the bis-phosphine carbazolide pincer ligand was investigated in the context of alkane dehydrogenation and in comparison with its iridium analogue. (carb-PNP)RhH(2) was found to catalyze cyclooctane/t-butylethylene (COA/TBE) transfer dehydrogenation with a turnover frequency up to 10 min(–1) and turnover numbers up to 340, in marked contrast with the inactive Ir analogue. TONs were limited by catalyst decomposition. Through a combination of mechanistic, experimental and computational (DFT) studies the difference between the Rh and Ir analogues was found to be attributable to the much greater accessibility of the 14-electron (carb-PNP)M(i) fragment in the case of Rh. In contrast, Ir is more strongly biased toward the M(iii) oxidation state. Thus (carb-PNP)RhH(2) but not (carb-PNP)IrH(2) can be dehydrogenated by sacrificial hydrogen acceptors, particularly TBE. The rate-limiting segment of the (carb-PNP)Rh-catalyzed COA/TBE transfer dehydrogenation cycle is found to be the dehydrogenation of COA. Within this segment, the rate-determining step is calculated to be (carb-PNP)Rh(cyclooctyl)(H) undergoing formation of a β-H agostic intermediate, while the reverse step (loss of a β-H agostic interaction) is rate-limiting for hydrogenation of the acceptors TBE and ethylene. Such a step has not previously been proposed as rate-limiting in the context of alkane dehydrogenation, nor, to our knowledge, has the reverse step been proposed as rate-limiting for olefin hydrogenation. Royal Society of Chemistry 2016-04-01 2016-01-20 /pmc/articles/PMC5477040/ /pubmed/28660029 http://dx.doi.org/10.1039/c5sc04794c Text en This journal is © The Royal Society of Chemistry 2016 http://creativecommons.org/licenses/by/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
spellingShingle | Chemistry Bézier, David Guan, Changjian Krogh-Jespersen, Karsten Goldman, Alan S. Brookhart, Maurice Experimental and computational study of alkane dehydrogenation catalyzed by a carbazolide-based rhodium PNP pincer complex |
title | Experimental and computational study of alkane dehydrogenation catalyzed by a carbazolide-based rhodium PNP pincer complex
|
title_full | Experimental and computational study of alkane dehydrogenation catalyzed by a carbazolide-based rhodium PNP pincer complex
|
title_fullStr | Experimental and computational study of alkane dehydrogenation catalyzed by a carbazolide-based rhodium PNP pincer complex
|
title_full_unstemmed | Experimental and computational study of alkane dehydrogenation catalyzed by a carbazolide-based rhodium PNP pincer complex
|
title_short | Experimental and computational study of alkane dehydrogenation catalyzed by a carbazolide-based rhodium PNP pincer complex
|
title_sort | experimental and computational study of alkane dehydrogenation catalyzed by a carbazolide-based rhodium pnp pincer complex |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5477040/ https://www.ncbi.nlm.nih.gov/pubmed/28660029 http://dx.doi.org/10.1039/c5sc04794c |
work_keys_str_mv | AT bezierdavid experimentalandcomputationalstudyofalkanedehydrogenationcatalyzedbyacarbazolidebasedrhodiumpnppincercomplex AT guanchangjian experimentalandcomputationalstudyofalkanedehydrogenationcatalyzedbyacarbazolidebasedrhodiumpnppincercomplex AT kroghjespersenkarsten experimentalandcomputationalstudyofalkanedehydrogenationcatalyzedbyacarbazolidebasedrhodiumpnppincercomplex AT goldmanalans experimentalandcomputationalstudyofalkanedehydrogenationcatalyzedbyacarbazolidebasedrhodiumpnppincercomplex AT brookhartmaurice experimentalandcomputationalstudyofalkanedehydrogenationcatalyzedbyacarbazolidebasedrhodiumpnppincercomplex |