Cargando…
O-GlcNAcylation mediates the control of cytosolic phosphoenolpyruvate carboxykinase activity via Pgc1α
PGC1α is a coactivator of many transcription factors and cytosolic phosphoenolpyruvate carboxykinase (PCK1) is a key enzyme for gluconeogenesis. PGC1α interacts with the transcription factor PPARγ to stimulate PCK1 expression and thus de novo glucose synthesis. These proteins are not only important...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5482481/ https://www.ncbi.nlm.nih.gov/pubmed/28644880 http://dx.doi.org/10.1371/journal.pone.0179988 |
_version_ | 1783245578825629696 |
---|---|
author | Latorre, Pedro Varona, Luis Burgos, Carmen Carrodeguas, José A. López-Buesa, Pascual |
author_facet | Latorre, Pedro Varona, Luis Burgos, Carmen Carrodeguas, José A. López-Buesa, Pascual |
author_sort | Latorre, Pedro |
collection | PubMed |
description | PGC1α is a coactivator of many transcription factors and cytosolic phosphoenolpyruvate carboxykinase (PCK1) is a key enzyme for gluconeogenesis. PGC1α interacts with the transcription factor PPARγ to stimulate PCK1 expression and thus de novo glucose synthesis. These proteins are not only important for central energy metabolism but also for supplying intermediates for other metabolic pathways, including lipidogenesis and protein synthesis and might therefore be important factors in the ethiopathogenesis of metabolic disorders like diabetes but also in other pathologies like cancer. Since polymorphisms in these proteins have been related to some phenotypic traits in animals like pigs and PGC1α G482S polymorphism increases fat deposition in humans, we have investigated the molecular basis of such effects focusing on a commonly studied polymorphism in pig Pgc1α, which changes a cysteine at position 430 (WT) of the protein to a serine (C430S). Biochemical analyses show that Pgc1α WT stimulates higher expression of human PCK1 in HEK293T and HepG2 cells. Paradoxically, Pgc1α WT is less stable than Pgc1α p.C430S in HEK293T cells. However, the study of different post-translational modifications shows a higher O-GlcNAcylation level of Pgc1α p.C430S. This higher O-GlcNAcylation level significantly decreases the interaction between Pgc1α and PPARγ demonstrating the importance of post-translational glycosylation of PGC1α in the regulation of PCK1 activity. This, furthermore, could explain at least in part the observed epistatic effects between PGC1α and PCK1 in pigs. |
format | Online Article Text |
id | pubmed-5482481 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-54824812017-07-06 O-GlcNAcylation mediates the control of cytosolic phosphoenolpyruvate carboxykinase activity via Pgc1α Latorre, Pedro Varona, Luis Burgos, Carmen Carrodeguas, José A. López-Buesa, Pascual PLoS One Research Article PGC1α is a coactivator of many transcription factors and cytosolic phosphoenolpyruvate carboxykinase (PCK1) is a key enzyme for gluconeogenesis. PGC1α interacts with the transcription factor PPARγ to stimulate PCK1 expression and thus de novo glucose synthesis. These proteins are not only important for central energy metabolism but also for supplying intermediates for other metabolic pathways, including lipidogenesis and protein synthesis and might therefore be important factors in the ethiopathogenesis of metabolic disorders like diabetes but also in other pathologies like cancer. Since polymorphisms in these proteins have been related to some phenotypic traits in animals like pigs and PGC1α G482S polymorphism increases fat deposition in humans, we have investigated the molecular basis of such effects focusing on a commonly studied polymorphism in pig Pgc1α, which changes a cysteine at position 430 (WT) of the protein to a serine (C430S). Biochemical analyses show that Pgc1α WT stimulates higher expression of human PCK1 in HEK293T and HepG2 cells. Paradoxically, Pgc1α WT is less stable than Pgc1α p.C430S in HEK293T cells. However, the study of different post-translational modifications shows a higher O-GlcNAcylation level of Pgc1α p.C430S. This higher O-GlcNAcylation level significantly decreases the interaction between Pgc1α and PPARγ demonstrating the importance of post-translational glycosylation of PGC1α in the regulation of PCK1 activity. This, furthermore, could explain at least in part the observed epistatic effects between PGC1α and PCK1 in pigs. Public Library of Science 2017-06-23 /pmc/articles/PMC5482481/ /pubmed/28644880 http://dx.doi.org/10.1371/journal.pone.0179988 Text en © 2017 Latorre et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Latorre, Pedro Varona, Luis Burgos, Carmen Carrodeguas, José A. López-Buesa, Pascual O-GlcNAcylation mediates the control of cytosolic phosphoenolpyruvate carboxykinase activity via Pgc1α |
title | O-GlcNAcylation mediates the control of cytosolic phosphoenolpyruvate carboxykinase activity via Pgc1α |
title_full | O-GlcNAcylation mediates the control of cytosolic phosphoenolpyruvate carboxykinase activity via Pgc1α |
title_fullStr | O-GlcNAcylation mediates the control of cytosolic phosphoenolpyruvate carboxykinase activity via Pgc1α |
title_full_unstemmed | O-GlcNAcylation mediates the control of cytosolic phosphoenolpyruvate carboxykinase activity via Pgc1α |
title_short | O-GlcNAcylation mediates the control of cytosolic phosphoenolpyruvate carboxykinase activity via Pgc1α |
title_sort | o-glcnacylation mediates the control of cytosolic phosphoenolpyruvate carboxykinase activity via pgc1α |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5482481/ https://www.ncbi.nlm.nih.gov/pubmed/28644880 http://dx.doi.org/10.1371/journal.pone.0179988 |
work_keys_str_mv | AT latorrepedro oglcnacylationmediatesthecontrolofcytosolicphosphoenolpyruvatecarboxykinaseactivityviapgc1a AT varonaluis oglcnacylationmediatesthecontrolofcytosolicphosphoenolpyruvatecarboxykinaseactivityviapgc1a AT burgoscarmen oglcnacylationmediatesthecontrolofcytosolicphosphoenolpyruvatecarboxykinaseactivityviapgc1a AT carrodeguasjosea oglcnacylationmediatesthecontrolofcytosolicphosphoenolpyruvatecarboxykinaseactivityviapgc1a AT lopezbuesapascual oglcnacylationmediatesthecontrolofcytosolicphosphoenolpyruvatecarboxykinaseactivityviapgc1a |