Cargando…
Identification of MAP kinase pathways as therapeutic targets in gallbladder carcinoma using targeted parallel sequencing
The aim of this study was to profile somatic mutation spectrum in gallbladder cancers (GBCs), and determine the role of MAP kinase pathway in GBC by a series of in vitro and in vivo studies. We performed targeted massively parallel sequencing of DNA isolated from GBCs and matched blood from 14 GBC p...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5482657/ https://www.ncbi.nlm.nih.gov/pubmed/28422736 http://dx.doi.org/10.18632/oncotarget.16751 |
_version_ | 1783245605970116608 |
---|---|
author | Li, Mengdan Chen, Lihong Qu, Yiping Sui, Fang Yang, Qi Ji, Meiju Shi, Bingyin Chen, Mingwei Hou, Peng |
author_facet | Li, Mengdan Chen, Lihong Qu, Yiping Sui, Fang Yang, Qi Ji, Meiju Shi, Bingyin Chen, Mingwei Hou, Peng |
author_sort | Li, Mengdan |
collection | PubMed |
description | The aim of this study was to profile somatic mutation spectrum in gallbladder cancers (GBCs), and determine the role of MAP kinase pathway in GBC by a series of in vitro and in vivo studies. We performed targeted massively parallel sequencing of DNA isolated from GBCs and matched blood from 14 GBC patients to search for mutations in 504 genes commonly altered in human cancers. We identified recurrent mutations enriched in several major signaling pathways including MAP kinase, Wnt/β-catenin and NF-κB pathways. Immunohistochemistry analysis further validated overactivation of MAP kinase and Wnt pathways in a panel of GBC samples. By treating GBC cells with MEK inhibitor trametinib, we found that trametinib not only dramatically inhibited the activity of MAPK/ERK pathway, but also blocked the Wnt/β-catenin signaling through decreasing β-catenin expression or suppressing nucleus translocation of β-catenin. Moreover, trametinib inhibited the proliferation of GBC cell in a dose- and time-dependent manner, induced GBC cell apoptosis, and inhibited GBC cell migration and invasion. Growth of xenograft tumors derived from GBC cell line NOZ in nude mice was also significantly inhibited by trametinib. Our data highlight the critical role of MAP kinase pathways in GBC pathogenesis, and may represent therapeutic targets for this cancer. |
format | Online Article Text |
id | pubmed-5482657 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-54826572017-06-27 Identification of MAP kinase pathways as therapeutic targets in gallbladder carcinoma using targeted parallel sequencing Li, Mengdan Chen, Lihong Qu, Yiping Sui, Fang Yang, Qi Ji, Meiju Shi, Bingyin Chen, Mingwei Hou, Peng Oncotarget Research Paper The aim of this study was to profile somatic mutation spectrum in gallbladder cancers (GBCs), and determine the role of MAP kinase pathway in GBC by a series of in vitro and in vivo studies. We performed targeted massively parallel sequencing of DNA isolated from GBCs and matched blood from 14 GBC patients to search for mutations in 504 genes commonly altered in human cancers. We identified recurrent mutations enriched in several major signaling pathways including MAP kinase, Wnt/β-catenin and NF-κB pathways. Immunohistochemistry analysis further validated overactivation of MAP kinase and Wnt pathways in a panel of GBC samples. By treating GBC cells with MEK inhibitor trametinib, we found that trametinib not only dramatically inhibited the activity of MAPK/ERK pathway, but also blocked the Wnt/β-catenin signaling through decreasing β-catenin expression or suppressing nucleus translocation of β-catenin. Moreover, trametinib inhibited the proliferation of GBC cell in a dose- and time-dependent manner, induced GBC cell apoptosis, and inhibited GBC cell migration and invasion. Growth of xenograft tumors derived from GBC cell line NOZ in nude mice was also significantly inhibited by trametinib. Our data highlight the critical role of MAP kinase pathways in GBC pathogenesis, and may represent therapeutic targets for this cancer. Impact Journals LLC 2017-03-31 /pmc/articles/PMC5482657/ /pubmed/28422736 http://dx.doi.org/10.18632/oncotarget.16751 Text en Copyright: © 2017 Li et al. http://creativecommons.org/licenses/by/3.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/) (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Research Paper Li, Mengdan Chen, Lihong Qu, Yiping Sui, Fang Yang, Qi Ji, Meiju Shi, Bingyin Chen, Mingwei Hou, Peng Identification of MAP kinase pathways as therapeutic targets in gallbladder carcinoma using targeted parallel sequencing |
title | Identification of MAP kinase pathways as therapeutic targets in gallbladder carcinoma using targeted parallel sequencing |
title_full | Identification of MAP kinase pathways as therapeutic targets in gallbladder carcinoma using targeted parallel sequencing |
title_fullStr | Identification of MAP kinase pathways as therapeutic targets in gallbladder carcinoma using targeted parallel sequencing |
title_full_unstemmed | Identification of MAP kinase pathways as therapeutic targets in gallbladder carcinoma using targeted parallel sequencing |
title_short | Identification of MAP kinase pathways as therapeutic targets in gallbladder carcinoma using targeted parallel sequencing |
title_sort | identification of map kinase pathways as therapeutic targets in gallbladder carcinoma using targeted parallel sequencing |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5482657/ https://www.ncbi.nlm.nih.gov/pubmed/28422736 http://dx.doi.org/10.18632/oncotarget.16751 |
work_keys_str_mv | AT limengdan identificationofmapkinasepathwaysastherapeutictargetsingallbladdercarcinomausingtargetedparallelsequencing AT chenlihong identificationofmapkinasepathwaysastherapeutictargetsingallbladdercarcinomausingtargetedparallelsequencing AT quyiping identificationofmapkinasepathwaysastherapeutictargetsingallbladdercarcinomausingtargetedparallelsequencing AT suifang identificationofmapkinasepathwaysastherapeutictargetsingallbladdercarcinomausingtargetedparallelsequencing AT yangqi identificationofmapkinasepathwaysastherapeutictargetsingallbladdercarcinomausingtargetedparallelsequencing AT jimeiju identificationofmapkinasepathwaysastherapeutictargetsingallbladdercarcinomausingtargetedparallelsequencing AT shibingyin identificationofmapkinasepathwaysastherapeutictargetsingallbladdercarcinomausingtargetedparallelsequencing AT chenmingwei identificationofmapkinasepathwaysastherapeutictargetsingallbladdercarcinomausingtargetedparallelsequencing AT houpeng identificationofmapkinasepathwaysastherapeutictargetsingallbladdercarcinomausingtargetedparallelsequencing |