Cargando…
S-phase checkpoint regulations that preserve replication and chromosome integrity upon dNTP depletion
DNA replication stress, an important source of genomic instability, arises upon different types of DNA replication perturbations, including those that stall replication fork progression. Inhibitors of the cellular pool of deoxynucleotide triphosphates (dNTPs) slow down DNA synthesis throughout the g...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5487892/ https://www.ncbi.nlm.nih.gov/pubmed/28220209 http://dx.doi.org/10.1007/s00018-017-2474-4 |
_version_ | 1783246542261452800 |
---|---|
author | Giannattasio, Michele Branzei, Dana |
author_facet | Giannattasio, Michele Branzei, Dana |
author_sort | Giannattasio, Michele |
collection | PubMed |
description | DNA replication stress, an important source of genomic instability, arises upon different types of DNA replication perturbations, including those that stall replication fork progression. Inhibitors of the cellular pool of deoxynucleotide triphosphates (dNTPs) slow down DNA synthesis throughout the genome. Following depletion of dNTPs, the highly conserved replication checkpoint kinase pathway, also known as the S-phase checkpoint, preserves the functionality and structure of stalled DNA replication forks and prevents chromosome fragmentation. The underlying mechanisms involve pathways extrinsic to replication forks, such as those involving regulation of the ribonucleotide reductase activity, the temporal program of origin firing, and cell cycle transitions. In addition, the S-phase checkpoint modulates the function of replisome components to promote replication integrity. This review summarizes the various functions of the replication checkpoint in promoting replication fork stability and genome integrity in the face of replication stress caused by dNTP depletion. |
format | Online Article Text |
id | pubmed-5487892 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-54878922017-07-03 S-phase checkpoint regulations that preserve replication and chromosome integrity upon dNTP depletion Giannattasio, Michele Branzei, Dana Cell Mol Life Sci Review DNA replication stress, an important source of genomic instability, arises upon different types of DNA replication perturbations, including those that stall replication fork progression. Inhibitors of the cellular pool of deoxynucleotide triphosphates (dNTPs) slow down DNA synthesis throughout the genome. Following depletion of dNTPs, the highly conserved replication checkpoint kinase pathway, also known as the S-phase checkpoint, preserves the functionality and structure of stalled DNA replication forks and prevents chromosome fragmentation. The underlying mechanisms involve pathways extrinsic to replication forks, such as those involving regulation of the ribonucleotide reductase activity, the temporal program of origin firing, and cell cycle transitions. In addition, the S-phase checkpoint modulates the function of replisome components to promote replication integrity. This review summarizes the various functions of the replication checkpoint in promoting replication fork stability and genome integrity in the face of replication stress caused by dNTP depletion. Springer International Publishing 2017-02-20 2017 /pmc/articles/PMC5487892/ /pubmed/28220209 http://dx.doi.org/10.1007/s00018-017-2474-4 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Review Giannattasio, Michele Branzei, Dana S-phase checkpoint regulations that preserve replication and chromosome integrity upon dNTP depletion |
title | S-phase checkpoint regulations that preserve replication and chromosome integrity upon dNTP depletion |
title_full | S-phase checkpoint regulations that preserve replication and chromosome integrity upon dNTP depletion |
title_fullStr | S-phase checkpoint regulations that preserve replication and chromosome integrity upon dNTP depletion |
title_full_unstemmed | S-phase checkpoint regulations that preserve replication and chromosome integrity upon dNTP depletion |
title_short | S-phase checkpoint regulations that preserve replication and chromosome integrity upon dNTP depletion |
title_sort | s-phase checkpoint regulations that preserve replication and chromosome integrity upon dntp depletion |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5487892/ https://www.ncbi.nlm.nih.gov/pubmed/28220209 http://dx.doi.org/10.1007/s00018-017-2474-4 |
work_keys_str_mv | AT giannattasiomichele sphasecheckpointregulationsthatpreservereplicationandchromosomeintegrityupondntpdepletion AT branzeidana sphasecheckpointregulationsthatpreservereplicationandchromosomeintegrityupondntpdepletion |