Cargando…

HIV virions sense plasma membrane heterogeneity for cell entry

It has been proposed that cholesterol in host cell membranes plays a pivotal role for cell entry of HIV. However, it remains largely unknown why virions prefer cholesterol-rich heterogeneous membranes to uniformly fluid membranes for membrane fusion. Using giant plasma membrane vesicles containing c...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Sung-Tae, Kreutzberger, Alex J. B., Kiessling, Volker, Ganser-Pornillos, Barbie K., White, Judith M., Tamm, Lukas K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5489272/
https://www.ncbi.nlm.nih.gov/pubmed/28782011
http://dx.doi.org/10.1126/sciadv.1700338
Descripción
Sumario:It has been proposed that cholesterol in host cell membranes plays a pivotal role for cell entry of HIV. However, it remains largely unknown why virions prefer cholesterol-rich heterogeneous membranes to uniformly fluid membranes for membrane fusion. Using giant plasma membrane vesicles containing cholesterol-rich ordered and cholesterol-poor fluid lipid domains, we demonstrate that the HIV receptor CD4 is substantially sequestered into ordered domains, whereas the co-receptor CCR5 localizes preferentially at ordered/disordered domain boundaries. We also show that HIV does not fuse from within ordered regions of the plasma membrane but rather at their boundaries. Ordered/disordered lipid domain coexistence is not required for HIV attachment but is a prerequisite for successful fusion. We propose that HIV virions sense and exploit membrane discontinuities to gain entry into cells. This study provides surprising answers to the long-standing question about the roles of cholesterol and ordered lipid domains in cell entry of HIV and perhaps other enveloped viruses.