Cargando…

Modulation of TRP Channel Activity by Hydroxylation and Its Therapeutic Potential

Two transient receptor potential (TRP) channels—TRPA1 and TRPV3—are post-translationally hydroxylated, resulting in oxygen-dependent regulation of channel activity. The enzymes responsible are the HIF prolyl hydroxylases (PHDs) and the asparaginyl hydroxylase factor inhibiting HIF (FIH). The PHDs an...

Descripción completa

Detalles Bibliográficos
Autores principales: Nagarajan, Yagnesh, Rychkov, Grigori Y., Peet, Daniel J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5490392/
https://www.ncbi.nlm.nih.gov/pubmed/28346371
http://dx.doi.org/10.3390/ph10020035
Descripción
Sumario:Two transient receptor potential (TRP) channels—TRPA1 and TRPV3—are post-translationally hydroxylated, resulting in oxygen-dependent regulation of channel activity. The enzymes responsible are the HIF prolyl hydroxylases (PHDs) and the asparaginyl hydroxylase factor inhibiting HIF (FIH). The PHDs and FIH are well characterized for their hydroxylation of the hypoxic inducible transcription factors (HIFs), mediating their hypoxic regulation. Consequently, these hydroxylases are currently being targeted therapeutically to modulate HIF activity in anemia, inflammation, and ischemic disease. Modulating the HIFs by targeting these hydroxylases may result in both desirable and undesirable effects on TRP channel activity, depending on the physiological context. For the best outcomes, these hydroxylases could be therapeutically targeted in pathologies where activation of both the HIFs and the relevant TRP channels are predicted to independently achieve positive outcomes, such as wound healing and obesity.