Cargando…

Cellular uptake and anti-tumor activity of gemcitabine conjugated with new amphiphilic cell penetrating peptides

Gemcitabine (Gem) is used as a single agent or in combination with other anticancer agents to treat many types of solid tumors. However, it has many limitations such as a short plasma half-life, dose-limiting toxicities and drug resistance. Cell-penetrating peptides (CPPs) are short peptides which m...

Descripción completa

Detalles Bibliográficos
Autores principales: Zakeri-Milani, Parvin, Mussa Farkhani, Samad, Shirani, Ali, Mohammadi, Samaneh, Shahbazi Mojarrad, Javid, Akbari, Jafar, Valizadeh, Hadi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Leibniz Research Centre for Working Environment and Human Factors 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491906/
https://www.ncbi.nlm.nih.gov/pubmed/28694765
http://dx.doi.org/10.17179/excli2017-249
Descripción
Sumario:Gemcitabine (Gem) is used as a single agent or in combination with other anticancer agents to treat many types of solid tumors. However, it has many limitations such as a short plasma half-life, dose-limiting toxicities and drug resistance. Cell-penetrating peptides (CPPs) are short peptides which may deliver a large variety of cargo molecules into the cancerous cells. The current study was designed to evaluate the antiproliferative activity of gemcitabine chemically conjugated to CPPs. The peptides were synthesized using solid phase synthesis procedure. The uptake efficiency of CPPs into cells was examined by flow cytometry and fluorescent microscopy. The synthesized peptides were chemically conjugated to Gem and the in vitro cytotoxicity of conjugates was tested by MTT assay on A594 cell line. According to the obtained results, cellular uptake was increased with increasing the concentration of CPPs. On the other hand the coupling of Gem with peptides containing block sequence of arginine (R5W3R4) and some alternating sequences (i.e. [RW]6 and [RW]3) exhibited improved antitumor activity of the drug. The findings in this study support the advantages of using cell-penetrating peptides for improving intracellular delivery of Gem into tumor as well as its activity.