Cargando…

Comparative proteomic analysis of Gib2 validating its adaptor function in Cryptococcus neoformans

Cryptococcus neoformans causes often-fatal fungal meningoencephalitis in immunocompromised individuals. While the exact disease mechanisms remain elusive, signal transduction pathways mediated by key elements such as G-protein α subunit Gpa1, small GTPase Ras1, and atypical Gβ-like/RACK1 protein Gib...

Descripción completa

Detalles Bibliográficos
Autores principales: Bruni, Gillian O., Battle, Blake, Kelly, Ben, Zhang, Zhengguang, Wang, Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501510/
https://www.ncbi.nlm.nih.gov/pubmed/28686685
http://dx.doi.org/10.1371/journal.pone.0180243
_version_ 1783248795121745920
author Bruni, Gillian O.
Battle, Blake
Kelly, Ben
Zhang, Zhengguang
Wang, Ping
author_facet Bruni, Gillian O.
Battle, Blake
Kelly, Ben
Zhang, Zhengguang
Wang, Ping
author_sort Bruni, Gillian O.
collection PubMed
description Cryptococcus neoformans causes often-fatal fungal meningoencephalitis in immunocompromised individuals. While the exact disease mechanisms remain elusive, signal transduction pathways mediated by key elements such as G-protein α subunit Gpa1, small GTPase Ras1, and atypical Gβ-like/RACK1 protein Gib2 are known to play important roles in C. neoformans virulence. Gib2 is important for normal growth, differentiation, and pathogenicity, and it also positively regulates cAMP levels in conjunction with Gpa1. Interestingly, Gib2 displays a scaffold protein property by interacting with a wide variety of cellular proteins. To explore Gib2 global regulatory functions, we performed two-dimensional differential gel electrophoresis (DIGE) analysis and found that GIB2 disruption results in an increased expression of 304 protein spots (43.4%) and a decreased expression of 396 protein spots (56.6%). Analysis of 96 proteins whose expression changes were deemed significant (≥ +/- 1.5- fold) revealed that 75 proteins belong to at least 12 functional protein groups. Among them, eight groups have the statistical stringency of p ≤ 0.05, and four groups, including Hsp70/71 heat shock protein homologs and ribosomal proteins, survived the Bonferroni correction. This finding is consistent with earlier established roles for the human Gβ-like/RACK1 and the budding yeast Saccharomyces cerevisiae Asc1. It suggests that Gib2 could also be part of the complex affecting ribosomal biogenesis and protein translation in C. neoformans. Since eukaryotic Hsp70/71 proteins are involved in the facilitation of nascent protein folding, processing, and protection of cells against stress, we also propose that Gib2-regulated stress responses are linked to fungal virulence. Collectively, our study supports a conserved role of Gβ-like/RACK/Gib2 proteins in the essential cellular process of ribosomal biogenesis and protein translation. Our study also highlights a multifaceted regulatory role of Gib2 in the growth and pathogenicity of C. neoformans.
format Online
Article
Text
id pubmed-5501510
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-55015102017-07-25 Comparative proteomic analysis of Gib2 validating its adaptor function in Cryptococcus neoformans Bruni, Gillian O. Battle, Blake Kelly, Ben Zhang, Zhengguang Wang, Ping PLoS One Research Article Cryptococcus neoformans causes often-fatal fungal meningoencephalitis in immunocompromised individuals. While the exact disease mechanisms remain elusive, signal transduction pathways mediated by key elements such as G-protein α subunit Gpa1, small GTPase Ras1, and atypical Gβ-like/RACK1 protein Gib2 are known to play important roles in C. neoformans virulence. Gib2 is important for normal growth, differentiation, and pathogenicity, and it also positively regulates cAMP levels in conjunction with Gpa1. Interestingly, Gib2 displays a scaffold protein property by interacting with a wide variety of cellular proteins. To explore Gib2 global regulatory functions, we performed two-dimensional differential gel electrophoresis (DIGE) analysis and found that GIB2 disruption results in an increased expression of 304 protein spots (43.4%) and a decreased expression of 396 protein spots (56.6%). Analysis of 96 proteins whose expression changes were deemed significant (≥ +/- 1.5- fold) revealed that 75 proteins belong to at least 12 functional protein groups. Among them, eight groups have the statistical stringency of p ≤ 0.05, and four groups, including Hsp70/71 heat shock protein homologs and ribosomal proteins, survived the Bonferroni correction. This finding is consistent with earlier established roles for the human Gβ-like/RACK1 and the budding yeast Saccharomyces cerevisiae Asc1. It suggests that Gib2 could also be part of the complex affecting ribosomal biogenesis and protein translation in C. neoformans. Since eukaryotic Hsp70/71 proteins are involved in the facilitation of nascent protein folding, processing, and protection of cells against stress, we also propose that Gib2-regulated stress responses are linked to fungal virulence. Collectively, our study supports a conserved role of Gβ-like/RACK/Gib2 proteins in the essential cellular process of ribosomal biogenesis and protein translation. Our study also highlights a multifaceted regulatory role of Gib2 in the growth and pathogenicity of C. neoformans. Public Library of Science 2017-07-07 /pmc/articles/PMC5501510/ /pubmed/28686685 http://dx.doi.org/10.1371/journal.pone.0180243 Text en © 2017 Bruni et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Bruni, Gillian O.
Battle, Blake
Kelly, Ben
Zhang, Zhengguang
Wang, Ping
Comparative proteomic analysis of Gib2 validating its adaptor function in Cryptococcus neoformans
title Comparative proteomic analysis of Gib2 validating its adaptor function in Cryptococcus neoformans
title_full Comparative proteomic analysis of Gib2 validating its adaptor function in Cryptococcus neoformans
title_fullStr Comparative proteomic analysis of Gib2 validating its adaptor function in Cryptococcus neoformans
title_full_unstemmed Comparative proteomic analysis of Gib2 validating its adaptor function in Cryptococcus neoformans
title_short Comparative proteomic analysis of Gib2 validating its adaptor function in Cryptococcus neoformans
title_sort comparative proteomic analysis of gib2 validating its adaptor function in cryptococcus neoformans
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501510/
https://www.ncbi.nlm.nih.gov/pubmed/28686685
http://dx.doi.org/10.1371/journal.pone.0180243
work_keys_str_mv AT brunigilliano comparativeproteomicanalysisofgib2validatingitsadaptorfunctionincryptococcusneoformans
AT battleblake comparativeproteomicanalysisofgib2validatingitsadaptorfunctionincryptococcusneoformans
AT kellyben comparativeproteomicanalysisofgib2validatingitsadaptorfunctionincryptococcusneoformans
AT zhangzhengguang comparativeproteomicanalysisofgib2validatingitsadaptorfunctionincryptococcusneoformans
AT wangping comparativeproteomicanalysisofgib2validatingitsadaptorfunctionincryptococcusneoformans